scispace - formally typeset
Search or ask a question
Author

Jiri Ceral

Bio: Jiri Ceral is an academic researcher. The author has contributed to research in topics: Mean blood pressure & Blood pressure. The author has an hindex of 1, co-authored 1 publications receiving 321 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The Rheos device sustainably reduces blood pressure in resistant hypertensive subjects with multiple comorbidities receiving numerous medications, and offers a safe individualized treatment option for these high-risk subjects.

336 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors focus on the relationship between the autonomic nervous system and the pathophysiology of atrial fibrillation and the potential benefit and limitations of neuromodulation in the management of this arrhythmia.
Abstract: Autonomic nervous system activation can induce significant and heterogeneous changes of atrial electrophysiology and induce atrial tachyarrhythmias, including atrial tachycardia and atrial fibrillation (AF). The importance of the autonomic nervous system in atrial arrhythmogenesis is also supported by circadian variation in the incidence of symptomatic AF in humans. Methods that reduce autonomic innervation or outflow have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. In this review, we focus on the relationship between the autonomic nervous system and the pathophysiology of AF and the potential benefit and limitations of neuromodulation in the management of this arrhythmia. We conclude that autonomic nerve activity plays an important role in the initiation and maintenance of AF, and modulating autonomic nerve function may contribute to AF control. Potential therapeutic applications include ganglionated plexus ablation, renal sympathetic denervation, cervical vagal nerve stimulation, baroreflex stimulation, cutaneous stimulation, novel drug approaches, and biological therapies. Although the role of the autonomic nervous system has long been recognized, new science and new technologies promise exciting prospects for the future.

504 citations

Journal ArticleDOI
TL;DR: Recent translational and clinical research into HF with preserved EF is reviewed and perspectives on its evolving demographics and epidemiology, the role of multiorgan deficiencies, potential mechanisms that involve the heart and other organs, clinical trials, and future directions are given.
Abstract: The clinical syndrome comprising heart failure (HF) symptoms but with a left ventricular ejection fraction (EF) that is not diminished, eg, HF with preserved EF, is increasingly the predominant form of HF in the developed world, and soon to reach epidemic proportions. It remains among the most challenging of clinical syndromes for the practicing clinician and scientist alike, with a multitude of proposed mechanisms involving the heart and other organs and complex interplay with common comorbidities. Importantly, its morbidity and mortality are on par with HF with reduced EF, and as the list of failed treatments continues to grow, HF with preserved EF clearly represents a major unmet medical need. The field is greatly in need of a more unified approach to its definition and view of the syndrome that engages integrative and reserve pathophysiology beyond that related to the heart alone. We need to reflect on prior treatment failures and the message this is providing, and redirect our approaches likely with a paradigm shift in how the disease is viewed. Success will require interactions between clinicians, translational researchers, and basic physiologists. Here, we review recent translational and clinical research into HF with preserved EF and give perspectives on its evolving demographics and epidemiology, the role of multiorgan deficiencies, potential mechanisms that involve the heart and other organs, clinical trials, and future directions.

392 citations

Journal ArticleDOI
TL;DR: The data supporting a contributory role of the autonomic functional alterations on the course of HF is analyzed, the techniques used to assess autonomic nervous system activity are reviewed, the evidence for clinical effectiveness of pharmacological and device interventions, and the potential future role of autonomics nervous system modifiers in the management of this syndrome are analyzed.
Abstract: The pathophysiology of heart failure (HF) is characterized by hemodynamic abnormalities that result in neurohormonal activation and autonomic imbalance with increase in sympathetic activity and withdrawal of vagal activity. Alterations in receptor activation from this autonomic imbalance may have profound effects on cardiac function and structure. Inhibition of the sympathetic drive to the heart through β-receptor blockade has become a standard component of therapy for HF with a dilated left ventricle because of its effectiveness in inhibiting the ventricular structural remodeling process and in prolonging life. Several devices for selective modulation of sympathetic and vagal activity have recently been developed in an attempt to alter the natural history of HF. The optimal counteraction of the excessive sympathetic activity is still unclear. A profound decrease in adrenergic support with excessive blockade of the sympathetic nervous system may result in adverse outcomes in clinical HF. In this review, we analyze the data supporting a contributory role of the autonomic functional alterations on the course of HF, the techniques used to assess autonomic nervous system activity, the evidence for clinical effectiveness of pharmacological and device interventions, and the potential future role of autonomic nervous system modifiers in the management of this syndrome.

389 citations

25 Apr 2014
TL;DR: It is concluded that autonomic nerve activity plays an important role in the initiation and maintenance of AF, and modulating autonomic nervous function may contribute to AF control.
Abstract: Autonomic nervous system activation can induce significant and heterogeneous changes of atrial electrophysiology and induce atrial tachyarrhythmias, including atrial tachycardia and atrial fibrillation (AF). The importance of the autonomic nervous system in atrial arrhythmogenesis is also supported by circadian variation in the incidence of symptomatic AF in humans. Methods that reduce autonomic innervation or outflow have been shown to reduce the incidence of spontaneous or induced atrial arrhythmias, suggesting that neuromodulation may be helpful in controlling AF. In this review, we focus on the relationship between the autonomic nervous system and the pathophysiology of AF and the potential benefit and limitations of neuromodulation in the management of this arrhythmia. We conclude that autonomic nerve activity plays an important role in the initiation and maintenance of AF, and modulating autonomic nerve function may contribute to AF control. Potential therapeutic applications include ganglionated plexus ablation, renal sympathetic denervation, cervical vagal nerve stimulation, baroreflex stimulation, cutaneous stimulation, novel drug approaches, and biological therapies. Although the role of the autonomic nervous system has long been recognized, new science and new technologies promise exciting prospects for the future.

361 citations