scispace - formally typeset

Author

Jiri Matas

Bio: Jiri Matas is an academic researcher from Czech Technical University in Prague. The author has contributed to research in topic(s): RANSAC & Video tracking. The author has an hindex of 78, co-authored 345 publication(s) receiving 44739 citation(s). Previous affiliations of Jiri Matas include University of Surrey & IEEE Computer Society.
Papers
More filters

Journal ArticleDOI
TL;DR: A common theoretical framework for combining classifiers which use distinct pattern representations is developed and it is shown that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision.
Abstract: We develop a common theoretical framework for combining classifiers which use distinct pattern representations and show that many existing schemes can be considered as special cases of compound classification where all the pattern representations are used jointly to make a decision. An experimental comparison of various classifier combination schemes demonstrates that the combination rule developed under the most restrictive assumptions-the sum rule-outperforms other classifier combinations schemes. A sensitivity analysis of the various schemes to estimation errors is carried out to show that this finding can be justified theoretically.

5,535 citations


Proceedings ArticleDOI
01 Jan 2002
TL;DR: The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints, is studied and an efficient and practically fast detection algorithm is presented for an affinely-invariant stable subset of extremal regions, the maximally stable extremal region (MSER).
Abstract: The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions , is introduced. Extremal regions possess highly desirable properties: the set is closed under (1) continuous (and thus projective) transformation of image coordinates and (2) monotonic transformation of image intensities. An efficient (near linear complexity) and practically fast detection algorithm (near frame rate) is presented for an affinely invariant stable subset of extremal regions, the maximally stable extremal regions (MSER). A new robust similarity measure for establishing tentative correspondences is proposed. The robustness ensures that invariants from multiple measurement regions (regions obtained by invariant constructions from extremal regions), some that are significantly larger (and hence discriminative) than the MSERs, may be used to establish tentative correspondences. The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes. Significant change of scale (3.5×), illumination conditions, out-of-plane rotation, occlusion, locally anisotropic scale change and 3D translation of the viewpoint are all present in the test problems. Good estimates of epipolar geometry (average distance from corresponding points to the epipolar line below 0.09 of the inter-pixel distance) are obtained.

3,387 citations


Journal ArticleDOI
TL;DR: A snapshot of the state of the art in affine covariant region detectors, and compares their performance on a set of test images under varying imaging conditions to establish a reference test set of images and performance software so that future detectors can be evaluated in the same framework.
Abstract: The paper gives a snapshot of the state of the art in affine covariant region detectors, and compares their performance on a set of test images under varying imaging conditions. Six types of detectors are included: detectors based on affine normalization around Harris (Mikolajczyk and Schmid, 2002; Schaffalitzky and Zisserman, 2002) and Hessian points (Mikolajczyk and Schmid, 2002), a detector of `maximally stable extremal regions', proposed by Matas et al. (2002); an edge-based region detector (Tuytelaars and Van Gool, 1999) and a detector based on intensity extrema (Tuytelaars and Van Gool, 2000), and a detector of `salient regions', proposed by Kadir, Zisserman and Brady (2004). The performance is measured against changes in viewpoint, scale, illumination, defocus and image compression. The objective of this paper is also to establish a reference test set of images and performance software, so that future detectors can be evaluated in the same framework.

3,231 citations


Journal ArticleDOI
TL;DR: The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes.
Abstract: The wide-baseline stereo problem, i.e. the problem of establishing correspondences between a pair of images taken from different viewpoints is studied. A new set of image elements that are put into correspondence, the so called extremal regions , is introduced. Extremal regions possess highly desirable properties: the set is closed under (1) continuous (and thus projective) transformation of image coordinates and (2) monotonic transformation of image intensities. An efficient (near linear complexity) and practically fast detection algorithm (near frame rate) is presented for an affinely invariant stable subset of extremal regions, the maximally stable extremal regions (MSER). A new robust similarity measure for establishing tentative correspondences is proposed. The robustness ensures that invariants from multiple measurement regions (regions obtained by invariant constructions from extremal regions), some that are significantly larger (and hence discriminative) than the MSERs, may be used to establish tentative correspondences. The high utility of MSERs, multiple measurement regions and the robust metric is demonstrated in wide-baseline experiments on image pairs from both indoor and outdoor scenes. Significant change of scale (3.5×), illumination conditions, out-of-plane rotation, occlusion, locally anisotropic scale change and 3D translation of the viewpoint are all present in the test problems. Good estimates of epipolar geometry (average distance from corresponding points to the epipolar line below 0.09 of the inter-pixel distance) are obtained.

3,202 citations


Journal ArticleDOI
TL;DR: A novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection, and develops a novel learning method (P-N learning) which estimates the errors by a pair of “experts”: P-expert estimates missed detections, and N-ex Expert estimates false alarms.
Abstract: This paper investigates long-term tracking of unknown objects in a video stream. The object is defined by its location and extent in a single frame. In every frame that follows, the task is to determine the object's location and extent or indicate that the object is not present. We propose a novel tracking framework (TLD) that explicitly decomposes the long-term tracking task into tracking, learning, and detection. The tracker follows the object from frame to frame. The detector localizes all appearances that have been observed so far and corrects the tracker if necessary. The learning estimates the detector's errors and updates it to avoid these errors in the future. We study how to identify the detector's errors and learn from them. We develop a novel learning method (P-N learning) which estimates the errors by a pair of “experts”: (1) P-expert estimates missed detections, and (2) N-expert estimates false alarms. The learning process is modeled as a discrete dynamical system and the conditions under which the learning guarantees improvement are found. We describe our real-time implementation of the TLD framework and the P-N learning. We carry out an extensive quantitative evaluation which shows a significant improvement over state-of-the-art approaches.

2,838 citations


Cited by
More filters

Journal ArticleDOI
David G. Lowe1Institutions (1)
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

42,225 citations


Journal ArticleDOI
TL;DR: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis that facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system.
Abstract: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

30,888 citations


Proceedings ArticleDOI
Christian Szegedy1, Wei Liu2, Yangqing Jia1, Pierre Sermanet1  +5 moreInstitutions (3)
07 Jun 2015
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

29,453 citations


Book
18 Nov 2016
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

26,972 citations


01 Jan 2011
TL;DR: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images that can then be used to reliably match objects in diering images.
Abstract: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images. These features can then be used to reliably match objects in diering images. The algorithm was rst proposed by Lowe [12] and further developed to increase performance resulting in the classic paper [13] that served as foundation for SIFT which has played an important role in robotic and machine vision in the past decade.

14,701 citations


Network Information
Related Authors (5)
Krystian Mikolajczyk

144 papers, 33K citations

93% related
Andrea Vedaldi

305 papers, 63.3K citations

92% related
Matej Kristan

123 papers, 7.3K citations

91% related
Ales Leonardis

288 papers, 13.2K citations

91% related
Martin Danelljan

131 papers, 17.6K citations

90% related
Performance
Metrics

Author's H-index: 78

No. of papers from the Author in previous years
YearPapers
202130
202030
201928
201830
201721
201619