scispace - formally typeset
Search or ask a question
Author

Jiri Matas

Bio: Jiri Matas is an academic researcher from Czech Technical University in Prague. The author has contributed to research in topics: RANSAC & Video tracking. The author has an hindex of 78, co-authored 345 publications receiving 44739 citations. Previous affiliations of Jiri Matas include University of Surrey & IEEE Computer Society.


Papers
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of recent research in RANSAC-based robust estimation is presented by analyzing and comparing various approaches that have been explored over the years and introducing a new framework for robust estimation, which is called Universal RANSac (USAC).
Abstract: A computational problem that arises frequently in computer vision is that of estimating the parameters of a model from data that have been contaminated by noise and outliers. More generally, any practical system that seeks to estimate quantities from noisy data measurements must have at its core some means of dealing with data contamination. The random sample consensus (RANSAC) algorithm is one of the most popular tools for robust estimation. Recent years have seen an explosion of activity in this area, leading to the development of a number of techniques that improve upon the efficiency and robustness of the basic RANSAC algorithm. In this paper, we present a comprehensive overview of recent research in RANSAC-based robust estimation by analyzing and comparing various approaches that have been explored over the years. We provide a common context for this analysis by introducing a new framework for robust estimation, which we call Universal RANSAC (USAC). USAC extends the simple hypothesize-and-verify structure of standard RANSAC to incorporate a number of important practical and computational considerations. In addition, we provide a general-purpose C++ software library that implements the USAC framework by leveraging state-of-the-art algorithms for the various modules. This implementation thus addresses many of the limitations of standard RANSAC within a single unified package. We benchmark the performance of the algorithm on a large collection of estimation problems. The implementation we provide can be used by researchers either as a stand-alone tool for robust estimation or as a benchmark for evaluating new techniques.

501 citations

Proceedings ArticleDOI
Matej Kristan1, Ales Leonardis2, Jiri Matas3, Michael Felsberg4, Roman Pflugfelder5, Luka Čehovin Zajc1, Tomas Vojir3, Gustav Häger4, Alan Lukezic1, Abdelrahman Eldesokey4, Gustavo Fernandez5, Alvaro Garcia-Martin6, Andrej Muhič1, Alfredo Petrosino7, Alireza Memarmoghadam8, Andrea Vedaldi9, Antoine Manzanera10, Antoine Tran10, A. Aydin Alatan11, Bogdan Mocanu, Boyu Chen12, Chang Huang, Changsheng Xu13, Chong Sun12, Dalong Du, David Zhang, Dawei Du13, Deepak Mishra, Erhan Gundogdu11, Erhan Gundogdu14, Erik Velasco-Salido, Fahad Shahbaz Khan4, Francesco Battistone, Gorthi R. K. Sai Subrahmanyam, Goutam Bhat4, Guan Huang, Guilherme Sousa Bastos, Guna Seetharaman15, Hongliang Zhang16, Houqiang Li17, Huchuan Lu12, Isabela Drummond, Jack Valmadre9, Jae-chan Jeong18, Jaeil Cho18, Jae-Yeong Lee18, Jana Noskova, Jianke Zhu19, Jin Gao13, Jingyu Liu13, Ji-Wan Kim18, João F. Henriques9, José M. Martínez, Junfei Zhuang20, Junliang Xing13, Junyu Gao13, Kai Chen21, Kannappan Palaniappan22, Karel Lebeda, Ke Gao22, Kris M. Kitani23, Lei Zhang, Lijun Wang12, Lingxiao Yang, Longyin Wen24, Luca Bertinetto9, Mahdieh Poostchi22, Martin Danelljan4, Matthias Mueller25, Mengdan Zhang13, Ming-Hsuan Yang26, Nianhao Xie16, Ning Wang17, Ondrej Miksik9, Payman Moallem8, Pallavi Venugopal M, Pedro Senna, Philip H. S. Torr9, Qiang Wang13, Qifeng Yu16, Qingming Huang13, Rafael Martin-Nieto, Richard Bowden27, Risheng Liu12, Ruxandra Tapu, Simon Hadfield27, Siwei Lyu28, Stuart Golodetz9, Sunglok Choi18, Tianzhu Zhang13, Titus Zaharia, Vincenzo Santopietro, Wei Zou13, Weiming Hu13, Wenbing Tao21, Wenbo Li28, Wengang Zhou17, Xianguo Yu16, Xiao Bian24, Yang Li19, Yifan Xing23, Yingruo Fan20, Zheng Zhu13, Zhipeng Zhang13, Zhiqun He20 
01 Jul 2017
TL;DR: The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative; results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years.
Abstract: The Visual Object Tracking challenge VOT2017 is the fifth annual tracker benchmarking activity organized by the VOT initiative. Results of 51 trackers are presented; many are state-of-the-art published at major computer vision conferences or journals in recent years. The evaluation included the standard VOT and other popular methodologies and a new "real-time" experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The VOT2017 goes beyond its predecessors by (i) improving the VOT public dataset and introducing a separate VOT2017 sequestered dataset, (ii) introducing a realtime tracking experiment and (iii) releasing a redesigned toolkit that supports complex experiments. The dataset, the evaluation kit and the results are publicly available at the challenge website1.

485 citations

Book ChapterDOI
TL;DR: A protocol for evaluating verification algorithms on the BANCA database, a new large, realistic and challenging multi-modal database intended for training and testing multi- modal verification systems, is described.
Abstract: In this paper we describe the acquisition and content of a new large, realistic and challenging multi-modal database intended for training and testing multi-modal verification systems. The BANCA database was captured in four European languages in two modalities (face and voice). For recording, both high and low quality microphones and cameras were used. The subjects were recorded in three different scenarios, controlled, degraded and adverse over a period of three months. In total 208 people were captured, half men and half women. In this paper we also describe a protocol for evaluating verification algorithms on the database. The database will be made available to the research community through http://www.ee.surrey.ac.uk/Research/VSSP/banca.

470 citations

Proceedings Article
01 Jan 2016
TL;DR: Performance is evaluated on GoogLeNet, CaffeNet, FitNets and Residual nets and the state-of-the-art, or very close to it, is achieved on the MNIST, CIFAR-10/100 and ImageNet datasets.
Abstract: Layer-sequential unit-variance (LSUV) initialization - a simple method for weight initialization for deep net learning - is proposed. The method consists of the two steps. First, pre-initialize weights of each convolution or inner-product layer with orthonormal matrices. Second, proceed from the first to the final layer, normalizing the variance of the output of each layer to be equal to one. Experiment with different activation functions (maxout, ReLU-family, tanh) show that the proposed initialization leads to learning of very deep nets that (i) produces networks with test accuracy better or equal to standard methods and (ii) is at least as fast as the complex schemes proposed specifically for very deep nets such as FitNets (Romero et al. (2015)) and Highway (Srivastava et al. (2015)). Performance is evaluated on GoogLeNet, CaffeNet, FitNets and Residual nets and the state-of-the-art, or very close to it, is achieved on the MNIST, CIFAR-10/100 and ImageNet datasets.

416 citations

Journal ArticleDOI
TL;DR: A randomized model verification strategy for RANSAC that removes the requirement for a priori knowledge of the fraction of outliers and estimates the quantity online, and has performance close to the theoretically optimal and is up to four times faster than previously published methods.
Abstract: A randomized model verification strategy for RANSAC is presented. The proposed method finds, like RANSAC, a solution that is optimal with user-specified probability. The solution is found in time that is close to the shortest possible and superior to any deterministic verification strategy. A provably fastest model verification strategy is designed for the (theoretical) situation when the contamination of data by outliers is known. In this case, the algorithm is the fastest possible (on the average) of all randomized RANSAC algorithms guaranteeing a confidence in the solution. The derivation of the optimality property is based on Wald's theory of sequential decision making, in particular, a modified sequential probability ratio test (SPRT). Next, the R-RANSAC with SPRT algorithm is introduced. The algorithm removes the requirement for a priori knowledge of the fraction of outliers and estimates the quantity online. We show experimentally that on standard test data, the method has performance close to the theoretically optimal and is 2 to 10 times faster than standard RANSAC and is up to four times faster than previously published methods.

415 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene and can robustly identify objects among clutter and occlusion while achieving near real-time performance.
Abstract: This paper presents a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scale and rotation, and are shown to provide robust matching across a substantial range of affine distortion, change in 3D viewpoint, addition of noise, and change in illumination. The features are highly distinctive, in the sense that a single feature can be correctly matched with high probability against a large database of features from many images. This paper also describes an approach to using these features for object recognition. The recognition proceeds by matching individual features to a database of features from known objects using a fast nearest-neighbor algorithm, followed by a Hough transform to identify clusters belonging to a single object, and finally performing verification through least-squares solution for consistent pose parameters. This approach to recognition can robustly identify objects among clutter and occlusion while achieving near real-time performance.

46,906 citations

Journal ArticleDOI
TL;DR: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis that facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system.
Abstract: Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.

43,540 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Book
18 Nov 2016
TL;DR: Deep learning as mentioned in this paper is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts, and it is used in many applications such as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames.
Abstract: Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

38,208 citations

01 Jan 2011
TL;DR: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images that can then be used to reliably match objects in diering images.
Abstract: The Scale-Invariant Feature Transform (or SIFT) algorithm is a highly robust method to extract and consequently match distinctive invariant features from images. These features can then be used to reliably match objects in diering images. The algorithm was rst proposed by Lowe [12] and further developed to increase performance resulting in the classic paper [13] that served as foundation for SIFT which has played an important role in robotic and machine vision in the past decade.

14,708 citations