scispace - formally typeset
Search or ask a question
Author

Jiří Patočka

Bio: Jiří Patočka is an academic researcher from Military Medical Academy. The author has contributed to research in topics: Acetylcholinesterase & Isopropyl. The author has an hindex of 16, co-authored 74 publications receiving 1762 citations.


Papers
More filters
Journal ArticleDOI
01 Jan 2001
TL;DR: All known cyanotoxins and their chemical and toxicological characteristics are presented in this article.
Abstract: Cyanobacteria, formerly called "blue-green algae", are simple, primitive photosynthetic microorganism wide occurrence in fresh, brackish and salt waters. Forty different genera of Cyanobacteria are known and many of them are producers of potent toxins responsible for a wide array of human illnesses, aquatic mammal and bird morbidity and mortality, and extensive fish kills. These cyanotoxins act as neurotoxins or hepatotoxins and are structurally and functionally diverse, and many are derived from unique biosynthetic pathways. All known cyanotoxins and their chemical and toxicological characteristics are presented in this article.

623 citations

Journal ArticleDOI
TL;DR: Being natural substances, their purification process is cheaper than the synthesis of any other sorbent and, moreover, due to their high operability, they absorb more than the absorbents used to date, such as active charcoals or clays.

328 citations

Journal ArticleDOI
TL;DR: The therapeutic potential of three pentacyclic triterpenes (lupeol, betuline and betulinic acid) is discussed in this paper, which is a very promising compound.

234 citations

Journal ArticleDOI
TL;DR: Understanding the enzyme's chemistry is essential in preventing and/or treating organophosphate and carbamate poisoning as well as designing new medicaments for cholinergic-related diseases like as Alzheimer's disease.
Abstract: The serine hydrolases and proteases are a ubiquitous group of enzymes that is fundamental to many critical life-functions. Human tissues have two distinct cholinesterase activities: acetylcholinesterase and butyrylcholinesterase. Acetylcholinesterase functions in the transmission of nerve impulses, whereas the physiological function of butyrylcholinesterase remains unknown. Acetylcholinesterase is one of the crucial enzymes in the central and peripheral nerve system. Organophosphates and carbamates are potent inhibitors of serine hydrolases and well suited probes for investigating the chemical reaction mechanism of the inhibition. Understanding the enzyme's chemistry is essential in preventing and/or treating organophosphate and carbamate poisoning as well as designing new medicaments for cholinergic-related diseases like as Alzheimer's disease.

107 citations

Journal ArticleDOI
TL;DR: The view of the chemical composition and pharmaceutical a toxicological properties of biologically active substances of Hypericum perforatum is the main purpose of this paper.

102 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review systematically introduces the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years.
Abstract: Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.

1,549 citations

Journal ArticleDOI
TL;DR: The time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions, as well as some of the long-suspected 'non-classical' actions of this enzyme, which have more recently driven a profound revolution in research.
Abstract: The discovery of the first neurotransmitter — acetylcholine — was soon followed by the discovery of its hydrolysing enzyme, acetylcholinesterase. The role of acetylcholinesterase in terminating acetylcholine-mediated neurotransmission made it the focus of intense research for much of the past century. But the complexity of acetylcholinesterase gene regulation and recent evidence for some of the long-suspected 'non-classical' actions of this enzyme have more recently driven a profound revolution in acetylcholinesterase research. Although our understanding of the additional roles of acetylcholinesterase is incomplete, the time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions.

1,216 citations

Journal ArticleDOI
01 Apr 2008-Small
TL;DR: The demonstrated photoluminescence adds another dimension to the versatility of carbon-based emitters, and is suggested that the tethered modifier stabilizes the surface of the carbon nanoparticles helping to generate energy traps that emit light when stimulated.
Abstract: Quantum dots are semiconductor nanocrystals that inherently fluoresce at specific wavelengths in the visible, enabling a number of potential applications to be realized. However, conventional quantum dots are based on metallic elements, which has raised concerns over toxicity, stability and high cost. As a result, the search for more benign substitutes is a worthwhile yet challenging undertaking. Recently a new type of visible emitters has been reported exclusively based on functionalized carbon nanoparticles. The carbon dots were 5 nm in diameter and were produced via laser ablation of graphite. Surface oxidation with nitric acid and subsequent covalent grafting of organic moieties afforded light-emitting derivatives. Notably, the light emitted by these dots depends on the wavelength of light used for excitation. It was suggested that the tethered modifier stabilizes the surface of the carbon nanoparticles helping to generate energy traps that emit light when stimulated, an effect described as emission from passivated surfaces. Because of its origin the emission is size-dependent, i.e., the smaller the size of the dots the better their photoluminescence efficiency. In another intriguing approach, photoluminescent carbon dots 3 nm in size were directly fabricated by electrochemical shocking of multi-wall carbon nanotubes. The demonstrated photoluminescence adds another dimension to the versatility of carbon-based

765 citations

Journal ArticleDOI
TL;DR: This review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS.

709 citations

Book ChapterDOI
TL;DR: The diagnosis of OP/nerve agent poisoning is based on anamnesis, the clinical status of the intoxicated organism, and on cholinesterase determination in the blood, where AChE in the red blood cell is more diagnostically important than BuChE activity in the plasma.
Abstract: OP/nerve agents are still considered as important chemicals acting on living organisms and are widely used. They are characterized according to their action as compounds influencing cholinergic nerve transmission via inhibition of AChE. Modeling of this action and extrapolation of experimental data from animals to humans is more possible for highly toxic agents than for the OP. The symptoms of intoxication comprise nicotinic, muscarinic, and central symptoms; for some OP/nerve agents, a delayed neurotoxicity is observed. Cholinesterases (AChE and BuChE) are characterized as the main enzymes involved in the toxic effect of these compounds, including molecular forms. The activity of both enzymes (and molecular forms) is influenced by inhibitors (reversible, irreversible, and allosteric) and other factors, such as pathological states. There are different methods for cholinesterase determination; however, the most frequent is the method based on the hydrolysis of thiocholine esters and subsequent detection of free SH-group of the released thiocholine. The diagnosis of OP/nerve agent poisoning is based on anamnesis, the clinical status of the intoxicated organism, and on cholinesterase determination in the blood. For nerve agent intoxication, AChE in the red blood cell is more diagnostically important than BuChE activity in the plasma. This enzyme is a good diagnostic marker for intoxication with OP pesticides. Some other biochemical examinations are recommended, especially arterial blood gas, blood pH, minerals, and some other specialized parameters usually not available in all clinical laboratories. These special examinations are important for prognosis of the intoxication, for effective treatment, and for retrospective analysis of the agent used for exposure. Some principles of prophylaxis against OP/nerve agent poisoning comprising the administration of reversible cholinesterase inhibitors such as pyridostigmine (alone or in combination with other drugs), scavengers such as preparations of cholinesterases, some therapeutic drugs, and possible combinations are given. Basic principles of the treatment of nerve agent OP poisoning are described. They are based on the administration of anticholinergics (mostly atropine but some other anticholinergics can be recommended) as a symptomatic treatment, cholinesterase reactivators as a causal treatment (different types but without a universal reactivator against all OP/nerve agents) as the first aid and medical treatment, and anticonvulsants, preferably diazepam though some other effective benzodiazepines are available. New drugs for the treatment are under experimental study based on new approaches to the mechanism of action. Future trends in the complex research of these compounds, which is important not only for the treatment of intoxication but also for the quantitative and qualitative increase of our knowledge of toxicology, neurochemistry, neuropharmacology, clinical biochemistry, and analytical chemistry in general, are characterized.

640 citations