scispace - formally typeset
Search or ask a question
Author

Jiri Tichy

Bio: Jiri Tichy is an academic researcher. The author has contributed to research in topics: Sound transmission class & Active vibration control. The author has an hindex of 1, co-authored 1 publications receiving 1055 citations.

Papers
More filters
Book•
07 Mar 1996
TL;DR: In this article, the authors present a general analysis of active structural acyclic control (ASAC) for plate systems, including the use of piezoelectric error sensors in ASAC.
Abstract: Introduction to Mechanical Vibrations: Terminology. Single-degree-of-freedom (SDOF) Systems. Free Motion of SDOF Systems. Damped Motion of SDOF Systems. Forced Response of SDOF Systems. Transient Response of SDOF Systems. Multi-degree-of-freedom (MDOF) Systems. Free Motion of MDOF Systems. Forced Response of MDOF Systems. Damped Motion of MDOF Systems. Finite Element Analysis of Vibrating Mechanical Systems. Introduction to Waves in Structures: Longitudinal Waves. Flexural Waves. Flexural Response of an Infinite Beam to an Oscillating Point Force. Flexural Wave Power Flow. Flexural Response of an Infinite Thin Beam to an Oscillating Line Moment. Free Flexural Motion of Finite Thin Beams. Response of a Finite Thin Beam to an Arbitrary Oscillating Force Distribution. Vibration of Thin Plates. Free Vibration of Thin Plates. Response of a Thin Rectangular Simply Supported Plate to an Arbitrary Oscillating Force Distribution. Vibration of Infinite Thin Cylinders. Free Vibration of Finite Thin Cylinders. Harmonic Forced Vibration of Infinite Thin Cylinders. Feedback Control: Single-channel Feedback Control. Stability of a Single-Channel System. Modification of the Response of an SDOF System. The Effect of Delays in the Feedback Loop. The State Variable Approach. Example of a Two-degree-of-freedom System. Output Feedback and State Feedback. State Estimation and Observers. Optimal Control. Modal Control. Feedforward Control: Single Channel Feedforward Control. The Effect of Measurement Noise. Adaptive Digital Controllers. Multichannel Feedforward Control. Adaptive Frequency Domain Controllers. Adaptive Time Domain Controllers. Equivalent Feedback Controller Interpretation. Distributed Transducers for Active Control of Vibration. Active Control of Vibration in Structures: Feedforward Control of Finite Structures. Feedback Control of Finite Structures. Feedforward Control of Wave Transmission. Actuator Arrays for Control of Flexural Waves. Sensor Arrays for Control of Flexural Waves. Feedforward Control of Flexural Waves. Feedback Control of Flexural Waves. Active Isolation of Vibrations: Isolation of Periodic Vibrations of an SDOF System. Vibration Isolation From a Flexible Receiver the Effects of Secondary Force Location. Active Isolation of Periodic Vibrations Using Multiple Secondary Force Inputs. Finite Element Analysis of an Active System for the Isolation of Periodic Vibrations. Practical Examples of Multi-Channel Feedforward Control for the Isolation of Periodic Vibrations. Isolation of Unpredictable Vibrations from a Receiving Structure. Isolation of Vibrating Systems from Random External Excitation the Possibilities for Feedforward Control. Isolation of Vibrating Systems from Random External Excitation Analysis of Feedback Control Strategies. Isolation of Vibrating Systems from Random External Excitation Formulation in Terms of Modern Control Theory. Active Isolation of Vehicle Vibrations from Road and Track Irregularities. Active Structural Acoustic Control, I. Plate Systems: Sound Radiation by Planar Vibrating Surfaces the Rayleigh Integral. The Calculation of Radiated Sound Fields by Using Wavenumber Fourier Transforms. Sound Power Radiation From Structures in Terms of Their Multi-Modal Response. General Analysis of Active Structural Acoustic Control (ASAC) for Plate Systems. Active Control of Sound Transmission Through a Rectangular Plate Using Point Force Actuators. Active Control of Structurally Radiated Sound Using Multiple Piezoelectric Actuator Interpretation of Behaviour in Terms of the Spatial Wavenumber Spectrum. The Use of Piezoelectric Distributed Structural Error Sensors in ASAC. An Example of the Implementation of Feedforward ASAC. Feeback Control of Sound Radiation From a Vibrating Baffled Piston. Feedback Control of Sound Radiation From Distributed Elastic Structures. Active Structural Acoustic Control, II. Cylinder Systems: Coupled Cylinder Acoustic Fields. Response of an Infinite Cylinder to a Harmonic Forcing Function. Active Control of Cylinder Interior Acoustic Fields Using Point Forces. Active Control of Vibration and Acoustic Transmission in Fluid-Filled Piping Systems. Active Control of Sound Radiation From Vibrating Cylinders. Active Control of Sound in Finite Cylinder Systems. Control of Interior Noise in a Full Scale Jet Aircraft Fuselage. Appendix. References. Index.

1,055 citations


Cited by
More filters
Journal Article•DOI•
01 Jun 1999
TL;DR: The basic adaptive algorithm for ANC is developed and analyzed based on single-channel broad-band feedforward control, then modified for narrow-bandFeedforward and adaptive feedback control, which are expanded to multiple-channel cases.
Abstract: Active noise control (ANC) is achieved by introducing a cancelling "antinoise" wave through an appropriate array of secondary sources. These secondary sources are interconnected through an electronic system using a specific signal processing algorithm for the particular cancellation scheme. ANC has application to a wide variety of problems in manufacturing, industrial operations, and consumer products. The emphasis of this paper is on the practical aspects of ANC systems in terms of adaptive signal processing and digital signal processing (DSP) implementation for real-world applications. In this paper, the basic adaptive algorithm for ANC is developed and analyzed based on single-channel broad-band feedforward control. This algorithm is then modified for narrow-band feedforward and adaptive feedback control. In turn, these single-channel ANC algorithms are expanded to multiple-channel cases. Various online secondary-path modeling techniques and special adaptive algorithms, such as lattice, frequency-domain, subband, and recursive-least-squares, are also introduced. Applications of these techniques to actual problems are highlighted by several examples.

1,254 citations

Journal Article•DOI•
D. Hrovat1•
TL;DR: While the main emphasis is on Linear-Quadratic optimal control and active suspensions, the paper also addresses a number of related subjects including semi-active suspensions; robust, adaptive and nonlinear control aspects and some of the important practical considerations.

779 citations

Journal Article•DOI•
Xian-Fang Li1•
TL;DR: In this article, a unified approach for analyzing the static and dynamic behaviors of functionally graded beams (FGB) with the rotary inertia and shear deformation included is presented, where all material properties are arbitrary functions along the beam thickness.

450 citations

Journal Article•DOI•
TL;DR: In this article, a nonlocal Bernoulli-Euler beam model is established based on the theory of nonlocal elasticity, which can be applied to modeling and characterization of size-dependent mechanical properties of micro- or nanoelectromechanical system (MEMS or NEMS) devices.
Abstract: In this paper, a nonlocal Bernoulli-Euler beam model is established based on the theory of nonlocal elasticity. Frequency equations and modal shape functions of beam structures with some typical boundary conditions are derived based on the model. The corresponding dynamic properties are presented and discussed in detail, which are shown to be very different from those predicted by classic elasticity theory when nonlocal effects are significant. The results can be applied to modeling and characterization of size-dependent mechanical properties of micro- or nanoelectromechanical system (MEMS or NEMS) devices.

406 citations

Journal Article•DOI•
TL;DR: In this paper, the authors present an overview of the literature on piezoelectric shunt damping and discuss recent observations on the feedback nature of shunt-based damping systems.
Abstract: Research on shunted piezoelectric transducers, performed mainly over the past decade, has generated new opportunities for control of vibration and damping in flexible structures. This is made possible by the strong electromechanical coupling associated with modern piezoelectric transducers. In vibration control applications, a piezoelectric transducer is bonded to, or embedded in a base structure. As the structure deforms, the piezoelectric element strains and converts a portion of the structural vibration energy into electrical energy. By shunting the piezoelectric transducer to an electrical impedance, a part of the induced electrical energy can be dissipated. Hence, the impedance acts as a means of extracting mechanical energy from the base structure. This paper reviews recent research related to the use of shunted piezoelectric elements for vibration damping and control. In particular, the paper presents an overview of the literature on piezoelectric shunt damping and discusses recent observations on the feedback nature of piezoelectric shunt damping systems.

300 citations