scispace - formally typeset
Search or ask a question
Author

Jitendra N. Tiwari

Bio: Jitendra N. Tiwari is an academic researcher from Ulsan National Institute of Science and Technology. The author has contributed to research in topics: Catalysis & Electrocatalyst. The author has an hindex of 26, co-authored 50 publications receiving 5331 citations. Previous affiliations of Jitendra N. Tiwari include Dongguk University & Pohang University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes, and graphene analogues.
Abstract: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π–π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graph...

1,799 citations

Journal ArticleDOI
TL;DR: In this paper, the authors focus on recent progress in advanced nanostructured materials (NSMs) as building blocks for EEDs (such as fuel cells, supercapacitors, and Li-ion batteries) based on investigations at the 0D, 1D, 2D and 3D NSMs.

845 citations

Journal ArticleDOI
TL;DR: In this paper, the development of technology for clean-energy production has become the major research priority worldwide, and the globalization of advanced energy conversion technologies like rechargeable metal-air batteries, regenerated fuel cells, and water splitting devices has been majorly benefitted by the developing of apposite catalytic materials that can proficiently carry out the pertinent electrochemical processes like oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction(HER), and water hydrolysis.
Abstract: The persistently increasing energy consumption and the low abundance of conventional fuels have raised serious concerns all over the world. Thus, the development of technology for clean-energy production has become the major research priority worldwide. The globalization of advanced energy conversion technologies like rechargeable metal–air batteries, regenerated fuel cells, and water-splitting devices has been majorly benefitted by the development of apposite catalytic materials that can proficiently carry out the pertinent electrochemical processes like oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and water hydrolysis. Despite a handful of superbly performing commercial catalysts, the high cost and low electrochemical stability of precursors have consistently discouraged their long-term viability. As a promising substitute of conventional platinum-, palladium-, iridium-, gold-, silver-, and ruthenium-based catalysts, various transition-metal (TM) i...

774 citations

Journal ArticleDOI
TL;DR: In this article, a multicomponent catalyst with an ultralow Pt loading (1.4μg per electrode area (cm2)) supported on melamine-derived graphitic tubes (GTs) that encapsulate a FeCo alloy and have Cu deposited on the inside tube walls.
Abstract: Platinum is the most effective electrocatalyst for the hydrogen evolution reaction in acidic solutions, but its high cost limits its wide application. Therefore, it is desirable to design catalysts that only require minimal amounts of Pt to function, but that are still highly active. Here we report hydrogen production in acidic water using a multicomponent catalyst with an ultralow Pt loading (1.4 μg per electrode area (cm2)) supported on melamine-derived graphitic tubes (GTs) that encapsulate a FeCo alloy and have Cu deposited on the inside tube walls. With a 1/80th Pt loading of a commercial 20% Pt/C catalyst, in 0.5 M H2SO4 the catalyst achieves a current density of 10 mA cm−2 at an overpotential of 18 mV, and shows a turnover frequency of 7.22 s−1 (96 times higher than that of the Pt/C catalyst) and long-term durability (10,000 cycles). We propose that a synergistic effect between the Pt clusters and single Pt atoms embedded in the GTs enhances the catalytic activity. Although Pt is highly active for electrocatalytic production of H2 from water, its cost limits its wide application. Here, the authors prepare a high-performing catalyst that is supported on graphitic tubes, containing Fe, Co and Cu, and requires only a small amount of Pt.

479 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
TL;DR: A detailed overview of the synthesis, properties and applications of nanoparticles exist in different forms NPs are tiny materials having size ranges from 1 to 100nm They can be classified into different classes based on their properties, shapes or sizes.

3,282 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of nanostructures on the properties of supercapacitors including specific capacitance, rate capability and cycle stability is discussed, which may serve as a guideline for the next generation of super-capacitor electrode design.
Abstract: Supercapacitors have drawn considerable attention in recent years due to their high specific power, long cycle life, and ability to bridge the power/energy gap between conventional capacitors and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical properties in producing high-performance supercapacitors. In this review article, we describe the recent progress and advances in designing nanostructured supercapacitor electrode materials based on various dimensions ranging from zero to three. We highlight the effect of nanostructures on the properties of supercapacitors including specific capacitance, rate capability and cycle stability, which may serve as a guideline for the next generation of supercapacitor electrode design.

1,987 citations

Journal ArticleDOI
TL;DR: The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment.
Abstract: Nanomaterials (NMs) have gained prominence in technological advancements due to their tunable physical, chemical and biological properties with enhanced performance over their bulk counterparts. NMs are categorized depending on their size, composition, shape, and origin. The ability to predict the unique properties of NMs increases the value of each classification. Due to increased growth of production of NMs and their industrial applications, issues relating to toxicity are inevitable. The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment. The review presents an overview of the history and classifications of NMs and gives an overview of the various sources of NPs and NSMs, from natural to synthetic, and their toxic effects towards mammalian cells and tissue. Additionally, the types of toxic reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed.

1,976 citations