scispace - formally typeset
Search or ask a question
Author

Jiulin Wang

Bio: Jiulin Wang is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Electrolyte & Anode. The author has an hindex of 53, co-authored 175 publications receiving 11099 citations. Previous affiliations of Jiulin Wang include Pacific Northwest National Laboratory & Zhengzhou University.
Topics: Electrolyte, Anode, Cathode, Lithium, Electrochemistry


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed, and the results obtained by modelling of Li dendrite growth have also been reviewed.
Abstract: Lithium (Li) metal is an ideal anode material for rechargeable batteries due to its extremely high theoretical specific capacity (3860 mA h g−1), low density (0.59 g cm−3) and the lowest negative electrochemical potential (−3.040 V vs. the standard hydrogen electrode). Unfortunately, uncontrollable dendritic Li growth and limited Coulombic efficiency during Li deposition/stripping inherent in these batteries have prevented their practical applications over the past 40 years. With the emergence of post-Li-ion batteries, safe and efficient operation of Li metal anodes has become an enabling technology which may determine the fate of several promising candidates for the next generation energy storage systems, including rechargeable Li–air batteries, Li–S batteries, and Li metal batteries which utilize intercalation compounds as cathodes. In this paper, various factors that affect the morphology and Coulombic efficiency of Li metal anodes have been analyzed. Technologies utilized to characterize the morphology of Li deposition and the results obtained by modelling of Li dendrite growth have also been reviewed. Finally, recent development and urgent need in this field are discussed.

3,394 citations

Journal ArticleDOI
Lichao Yin1, Jiulin Wang1, Fengjiao Lin1, Jun Yang1, Yanna Nuli1 
TL;DR: In this article, a pyrolyzed polyacrylonitrile/graphene (pPAN-S/GNS) composite cathode has been evaluated by cyclic voltammograms, galvanostatic discharge-charge cycling and electrochemical impedance spectroscopy.
Abstract: Polyacrylonitrile/graphene (PAN/GNS) composites have been synthesized via an in situ polymerization method for the first time, which serve as a precursor to prepare a cathode material for high-rate rechargeable Li–S batteries. It is observed from scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the PAN nanoparticles, less than 100 nm in size, are anchored on the surface of the GNS and this unique structure is maintained in the sulfur composite cathode material. The electrochemical properties of the pyrolyzed PAN-S/GNS (pPAN-S/GNS) composite cathode have been evaluated by cyclic voltammograms, galvanostatic discharge–charge cycling and electrochemical impedance spectroscopy. The results show that the pPAN-S/GNS nanocomposite, with a GNS content of ca. 4 wt.%, exhibits a reversible capacity of ca. 1500 mA hg−1sulfur or 700 mA hg−1composite in the first cycle, corresponding to a sulfur utilization of ca. 90%. The capacity retention is relatively stable at 0.1 C. Even up to 6 C, a competitive capacity of ca. 800 mA hg−1sulfur is obtained. The superior performance of pPAN-S/GNS is attributed to the introduction of the GNS and the even composite structure. The GNS in the composite materials works as a three-dimensional (3-D) nano current collector, which could act not only as an electronically conductive matrix, but also as a framework to improve the electrochemical performance.

460 citations

Journal ArticleDOI
TL;DR: Hierarchical porous TiO(2)-B with thin nanosheets with joint advantages endow this material with high reversible capacity, excellent cycling performance, and superior rate capability.
Abstract: Hierarchical porous TiO(2)-B with thin nanosheets is successfully synthesized. TiO(2)-B polymorph ensures fast insertion of Li-ion due to its pseudocapacitive mechanism. The thin nanosheet walls with porous structure allow exposure to electrolytes for facile ionic transport and interfacial reaction. The joint advantages endow this material with high reversible capacity, excellent cycling performance, and superior rate capability.

359 citations

Journal ArticleDOI
Ahmad Naveed1, Huijun Yang1, Jun Yang1, Yanna Nuli1, Jiulin Wang1 
TL;DR: The novel adoption of triethyl phosphate as a solvent and co-solvent with aqueous electrolytes to obtain a highly stable and dendrite-free Zn anode is reported, contributing towards cost-effective and safe battery systems.
Abstract: Zinc metal is an attractive anode material for next-generation batteries. However, dendrite growth and limited Coulombic efficiency (CE) during cycling are the major roadblocks towards the widespread commercialization of batteries employing Zn anodes. In this work we report the novel adoption of triethyl phosphate (TEP) as a solvent and co-solvent with aqueous electrolytes to obtain a highly stable and dendrite-free Zn anode. Stable Zn plating/stripping for over 3000 h was obtained, accompanied by a CE of 99.68 %. SEM images of the Zn anodes revealed highly porous interconnected dendrite-free Zn deposits. The electrolyte displayed good compatibility with both Zn anodes and potassium copper hexacyanoferrate (KCuHCf) cathodes for Zn ion batteries (ZIBs). The full cell showed a long cycling stability and high rate capability. The present work is a contribution towards cost-effective and safe battery systems.

342 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the key technological developments and scientific challenges for a broad range of Li-ion battery electrodes is presented, and the potential/capacity plots are used to compare many families of suitable materials.

5,057 citations

Journal ArticleDOI
TL;DR: The current understanding on Li anodes is summarized, the recent key progress in materials design and advanced characterization techniques are highlighted, and the opportunities and possible directions for future development ofLi anodes in applications are discussed.
Abstract: Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

4,302 citations

Journal ArticleDOI
TL;DR: In this article, the pseudocapacitance properties of transition metal oxides have been investigated and a review of the most relevant pseudo-capacitive materials in aqueous and non-aqueous electrolytes is presented.
Abstract: Electrochemical energy storage technology is based on devices capable of exhibiting high energy density (batteries) or high power density (electrochemical capacitors). There is a growing need, for current and near-future applications, where both high energy and high power densities are required in the same material. Pseudocapacitance, a faradaic process involving surface or near surface redox reactions, offers a means of achieving high energy density at high charge–discharge rates. Here, we focus on the pseudocapacitive properties of transition metal oxides. First, we introduce pseudocapacitance and describe its electrochemical features. Then, we review the most relevant pseudocapacitive materials in aqueous and non-aqueous electrolytes. The major challenges for pseudocapacitive materials along with a future outlook are detailed at the end.

3,930 citations

Journal ArticleDOI
TL;DR: This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth, summarizing the theoretical and experimental achievements and endeavors to realize the practical applications of lithium metal batteries.
Abstract: The lithium metal battery is strongly considered to be one of the most promising candidates for high-energy-density energy storage devices in our modern and technology-based society. However, uncontrollable lithium dendrite growth induces poor cycling efficiency and severe safety concerns, dragging lithium metal batteries out of practical applications. This review presents a comprehensive overview of the lithium metal anode and its dendritic lithium growth. First, the working principles and technical challenges of a lithium metal anode are underscored. Specific attention is paid to the mechanistic understandings and quantitative models for solid electrolyte interphase (SEI) formation, lithium dendrite nucleation, and growth. On the basis of previous theoretical understanding and analysis, recently proposed strategies to suppress dendrite growth of lithium metal anode and some other metal anodes are reviewed. A section dedicated to the potential of full-cell lithium metal batteries for practical applicatio...

3,812 citations

Journal ArticleDOI

3,654 citations