scispace - formally typeset
Search or ask a question
Author

Jiuwen Cao

Bio: Jiuwen Cao is an academic researcher from Hangzhou Dianzi University. The author has contributed to research in topics: Extreme learning machine & Computer science. The author has an hindex of 29, co-authored 151 publications receiving 3029 citations. Previous affiliations of Jiuwen Cao include University of Electronic Science and Technology of China & Nanyang Technological University.


Papers
More filters
Journal ArticleDOI
TL;DR: The proposed method incorporates the voting method into the popular extreme learning machine (ELM) in classification applications and generally outperforms the original ELM algorithm as well as several recent classification algorithms.

329 citations

Journal ArticleDOI
TL;DR: Simulations have shown that SaE-ELM not only performs better than E- ELM with several manually choosing generation strategies and control parameters but also obtains better generalization performances than several related methods.
Abstract: In this paper, we propose an improved learning algorithm named self-adaptive evolutionary extreme learning machine (SaE-ELM) for single hidden layer feedforward networks (SLFNs). In SaE-ELM, the network hidden node parameters are optimized by the self-adaptive differential evolution algorithm, whose trial vector generation strategies and their associated control parameters are self-adapted in a strategy pool by learning from their previous experiences in generating promising solutions, and the network output weights are calculated using the Moore–Penrose generalized inverse. SaE-ELM outperforms the evolutionary extreme learning machine (E-ELM) and the different evolutionary Levenberg–Marquardt method in general as it could self-adaptively determine the suitable control parameters and generation strategies involved in DE. Simulations have shown that SaE-ELM not only performs better than E-ELM with several manually choosing generation strategies and control parameters but also obtains better generalization performances than several related methods.

244 citations

Journal ArticleDOI
TL;DR: Extensive experiments on handwritten digit classification, landmark recognition and face recognition demonstrate that the proposed hybrid classifier outperforms ELM and SRC in classification accuracy with outstanding computational efficiency.

190 citations

Proceedings ArticleDOI
27 May 2018
TL;DR: This paper proposes a novel deep neural network architecture based on transfer learning for microscopic image classification that produces significant performance gains comparing to the neural network structure that uses only features extracted from single CNN and several traditional classification methods.
Abstract: Deep convolutional neural networks (CNNs) have become one of the state-of-the-art methods for image classification in various domains. For biomedical image classification where the number of training images is generally limited, transfer learning using CNNs is often applied. Such technique extracts generic image features from nature image datasets and these features can be directly adopted for feature extraction in smaller datasets. In this paper, we propose a novel deep neural network architecture based on transfer learning for microscopic image classification. In our proposed network, we concatenate the features extracted from three pretrained deep CNNs. The concatenated features are then used to train two fully-connected layers to perform classification. In the experiments on both the 2D-Hela and the PAP-smear datasets, our proposed network architecture produces significant performance gains comparing to the neural network structure that uses only features extracted from single CNN and several traditional classification methods.

173 citations

Journal ArticleDOI
TL;DR: Inspired by kernel learning, a kernel version of ML-ELM is developed, namely, multilayer kernel ELM (ML-KELM), whose contributions are elimination of manual tuning on the number of hidden nodes in every layer and no random projection mechanism so as to obtain optimal model generalization.
Abstract: Recently, multilayer extreme learning machine (ML-ELM) was applied to stacked autoencoder (SAE) for representation learning. In contrast to traditional SAE, the training time of ML-ELM is significantly reduced from hours to seconds with high accuracy. However, ML-ELM suffers from several drawbacks: 1) manual tuning on the number of hidden nodes in every layer is an uncertain factor to training time and generalization; 2) random projection of input weights and bias in every layer of ML-ELM leads to suboptimal model generalization; 3) the pseudoinverse solution for output weights in every layer incurs relatively large reconstruction error; and 4) the storage and execution time for transformation matrices in representation learning are proportional to the number of hidden layers. Inspired by kernel learning, a kernel version of ML-ELM is developed, namely, multilayer kernel ELM (ML-KELM), whose contributions are: 1) elimination of manual tuning on the number of hidden nodes in every layer; 2) no random projection mechanism so as to obtain optimal model generalization; 3) exact inverse solution for output weights is guaranteed under invertible kernel matrix, resulting to smaller reconstruction error; and 4) all transformation matrices are unified into two matrices only, so that storage can be reduced and may shorten model execution time. Benchmark data sets of different sizes have been employed for the evaluation of ML-KELM. Experimental results have verified the contributions of the proposed ML-KELM. The improvement in accuracy over benchmark data sets is up to 7%.

156 citations


Cited by
More filters
01 Jan 2002

9,314 citations

Journal ArticleDOI
TL;DR: An in depth review of rare event detection from an imbalanced learning perspective and a comprehensive taxonomy of the existing application domains of im balanced learning are provided.
Abstract: 527 articles related to imbalanced data and rare events are reviewed.Viewing reviewed papers from both technical and practical perspectives.Summarizing existing methods and corresponding statistics by a new taxonomy idea.Categorizing 162 application papers into 13 domains and giving introduction.Some opening questions are discussed at the end of this manuscript. Rare events, especially those that could potentially negatively impact society, often require humans decision-making responses. Detecting rare events can be viewed as a prediction task in data mining and machine learning communities. As these events are rarely observed in daily life, the prediction task suffers from a lack of balanced data. In this paper, we provide an in depth review of rare event detection from an imbalanced learning perspective. Five hundred and seventeen related papers that have been published in the past decade were collected for the study. The initial statistics suggested that rare events detection and imbalanced learning are concerned across a wide range of research areas from management science to engineering. We reviewed all collected papers from both a technical and a practical point of view. Modeling methods discussed include techniques such as data preprocessing, classification algorithms and model evaluation. For applications, we first provide a comprehensive taxonomy of the existing application domains of imbalanced learning, and then we detail the applications for each category. Finally, some suggestions from the reviewed papers are incorporated with our experiences and judgments to offer further research directions for the imbalanced learning and rare event detection fields.

1,448 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report the current state of the theoretical research and practical advances on this subject and provide a comprehensive view of these advances in ELM together with its future perspectives.

1,289 citations

Journal ArticleDOI
14 Aug 2018-Sensors
TL;DR: A comprehensive review of research dedicated to applications of machine learning in agricultural production systems is presented, demonstrating how agriculture will benefit from machine learning technologies.
Abstract: Machine learning has emerged with big data technologies and high-performance computing to create new opportunities for data intensive science in the multi-disciplinary agri-technologies domain. In this paper, we present a comprehensive review of research dedicated to applications of machine learning in agricultural production systems. The works analyzed were categorized in (a) crop management, including applications on yield prediction, disease detection, weed detection crop quality, and species recognition; (b) livestock management, including applications on animal welfare and livestock production; (c) water management; and (d) soil management. The filtering and classification of the presented articles demonstrate how agriculture will benefit from machine learning technologies. By applying machine learning to sensor data, farm management systems are evolving into real time artificial intelligence enabled programs that provide rich recommendations and insights for farmer decision support and action.

1,262 citations