scispace - formally typeset
Search or ask a question
Author

Jiwan Kim

Bio: Jiwan Kim is an academic researcher from Kyonggi University. The author has contributed to research in topics: Quantum dot & Light-emitting diode. The author has an hindex of 15, co-authored 64 publications receiving 1737 citations. Previous affiliations of Jiwan Kim include University of Wisconsin-Madison & Wisconsin Alumni Research Foundation.


Papers
More filters
Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature, which is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that ofthin- film transistors based on thermally annealed materials.
Abstract: A method for annealing metal-oxide semiconductor films with deep-ultraviolet light yields thin-film transistors with performance comparable to that of thermally annealed devices, and widens the range of substrates on which such devices can be fabricated. Solution-processable metal-oxide semiconductors are attractive materials for low-cost, flexible electronics, but the need to anneal the deposited materials at relatively high temperatures limits the range of substrates on which such devices can be fabricated. Now Yong-Hoon Kim and colleagues demonstrate that irradiating the solution-cast films with deep ultraviolet light can obviate the need for an annealing step. In this system, photochemical activation serves essentially the same purpose as annealing, and the resulting semiconducting materials have device performance levels comparable to those produced using the high-temperature techniques. Amorphous metal-oxide semiconductors have emerged as potential replacements for organic and silicon materials in thin-film electronics. The high carrier mobility in the amorphous state, and excellent large-area uniformity, have extended their applications to active-matrix electronics, including displays, sensor arrays and X-ray detectors1,2,3,4,5,6,7. Moreover, their solution processability and optical transparency have opened new horizons for low-cost printable and transparent electronics on plastic substrates8,9,10,11,12,13. But metal-oxide formation by the sol–gel route requires an annealing step at relatively high temperature2,14,15,16,17,18,19, which has prevented the incorporation of these materials with the polymer substrates used in high-performance flexible electronics. Here we report a general method for forming high-performance and operationally stable metal-oxide semiconductors at room temperature, by deep-ultraviolet photochemical activation of sol–gel films. Deep-ultraviolet irradiation induces efficient condensation and densification of oxide semiconducting films by photochemical activation at low temperature. This photochemical activation is applicable to numerous metal-oxide semiconductors, and the performance (in terms of transistor mobility and operational stability) of thin-film transistors fabricated by this route compares favourably with that of thin-film transistors based on thermally annealed materials. The field-effect mobilities of the photo-activated metal-oxide semiconductors are as high as 14 and 7 cm2 V−1 s−1 (with an Al2O3 gate insulator) on glass and polymer substrates, respectively; and seven-stage ring oscillators fabricated on polymer substrates operate with an oscillation frequency of more than 340 kHz, corresponding to a propagation delay of less than 210 nanoseconds per stage.

956 citations

Journal ArticleDOI
TL;DR: A smooth, ultra-flexible, and transparent electrode was developed from silver nanowires embedded in a colorless polyimide (cPI) by utilizing an inverted film-processing method, and the fabricated flexible devices showed only slight performance reductions of <3% even after repeated foldings with a 30 μm bending radius.
Abstract: A smooth, ultra-flexible, and transparent electrode was developed from silver nanowires (AgNWs) embedded in a colorless polyimide (cPI) by utilizing an inverted film-processing method. The resulting AgNW-cPI composite electrode had a transparency of >80%, a low sheet resistance of 8 Ω/□, and ultra-smooth surfaces comparable to glass. Leveraging the robust mechanical properties and flexibility of cPI, the thickness of the composite film was reduced to less than 10 μm, which is conducive to extreme flexibility. This film exhibited mechanical durability, for both outward and inward bending tests, up to a bending radius of 30 μm, while maintaining its electrical performance under cyclic bending (bending radius: 500 μm) for 100,000 iterations. Phosphorescent, blue organic light-emitting diodes (OLEDs) were fabricated using these composites as bottom electrodes (anodes). Hole-injection was poor, because AgNWs were largely buried beneath the composite's surface. Thus, we used a simple plasma treatment to remove the thin cPI layer overlaying the nanowires without introducing other conductive materials. As a result, we were able to finely control the flexible OLEDs' electroluminescent properties using the enlarged conductive pathways. The fabricated flexible devices showed only slight performance reductions of <3% even after repeated foldings with a 30 μm bending radius.

187 citations

Journal ArticleDOI
TL;DR: In this article, three Zn1-xMgxO (x = 0, 0.05,0.1) NPs that possess different electronic energy levels are applied as ETLs of solution-processed, multilayered I-III-VI type QLEDs that consist of a Cu-In-S, Cu-IN-GaS, or Zn-Cu-S emitting layer (EML) plus a common organic hole transport layer of poly(9-vinlycarbazole).
Abstract: Since the introduction of inorganic ZnO, typically in the form of nanoparticles (NPs), as an electron transport layer (ETL) material, the device performance of electrically driven colloidal quantum dot-light-emitting diodes (QLEDs), in particular, with either Cd-based II–VI or non-Cd-based III–V (e.g., InP) quantum dot (QD) visible-emitters, has been rapidly improved. In the present work, three Zn1–xMgxO (x = 0, 0.05, 0.1) NPs that possess different electronic energy levels are applied as ETLs of solution-processed, multilayered I–III–VI type QLEDs that consist of a Cu–In–S, Cu–In–Ga–S, or Zn–Cu–In–S QD emitting layer (EML) plus a common organic hole transport layer of poly(9-vinlycarbazole). The luminance and efficiency of those QLEDs are found to be strongly dependent on the type of ZnMgO NP ETL, resulting in the substantial improvements by means of alloyed ZnMgO ETL versus pure ZnO one. Ultraviolet photoelectron and absorption spectroscopic measurements on a series of ZnMgO NP films reveal that their c...

132 citations

Journal ArticleDOI
TL;DR: In this paper, an organic/inorganic hybrid QD-LED with Cd-free InP QDs as light emitting layer and inorganic ZrO2 nanoparticles as electron transport layer was proposed.
Abstract: Because of outstanding optical properties and non-vacuum solution processability of colloidal quantum dot (QD) semiconductors, many researchers have developed various light emitting diodes (LEDs) using QD materials. Until now, the Cd-based QD-LEDs have shown excellent properties, but the eco-friendly QD semiconductors have attracted many attentions due to the environmental regulation. And, since there are many issues about the reliability of conventional QD-LEDs with organic charge transport layers, a stable charge transport layer in various conditions must be developed for this reason. This study proposes the organic/inorganic hybrid QD-LEDs with Cd-free InP QDs as light emitting layer and inorganic ZrO2 nanoparticles as electron transport layer. The QD-LED with bottom emission structure shows the luminescence of 530 cd m−2 and the current efficiency of 1 cd/A. To realize the transparent QD-LED display, the two-step sputtering process of indium zinc oxide (IZO) top electrode is applied to the devices and this study could fabricate the transparent QD-LED device with the transmittance of more than 74% for whole device array. And when the IZO top electrode with high work-function is applied to top transparent anode, the device could maintain the current efficiency within the driving voltage range without well-known roll-off phenomenon in QD-LED devices.

79 citations

Journal ArticleDOI
TL;DR: An extensible 3D-platform of thin film flexible microscale ECoG arrays appropriate for Brain-Computer Interface (BCI) application, as well as monitoring epileptic activity, is presented.
Abstract: Over the past decade, electrocorticography (ECoG) has been used for a wide set of clinical and experimental applications. Recently, there have been efforts in the clinic to adapt traditional ECoG arrays to include smaller recording contacts and spacing. These devices, which may be collectively called “micro-ECoG” arrays, are loosely defined as intercranial devices that record brain electrical activity on the submillimeter scale. An extensible 3D-platform of thin film flexible micro-scale ECoG arrays appropriate for Brain-Computer Interface (BCI) application, as well as monitoring epileptic activity, is presented. The designs utilize flexible film electrodes to keep the array in place without applying significant pressure to the brain and to enable radial subcranial deployment of multiple electrodes from a single craniotomy. Deployment techniques were tested in non-human primates, and stimulus-evoked activity and spontaneous epileptic activity were recorded. Further tests in BCI and epilepsy applications will make the electrode platform ready for initial human testing.

72 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin- film transistors, solar cells, diodes and memories.
Abstract: Optical transparency, tunable conducting properties and easy processability make metal oxides key materials for advanced optoelectronic devices. This Review discusses recent advances in the synthesis of these materials and their use in applications. Metal oxides (MOs) are the most abundant materials in the Earth's crust and are ingredients in traditional ceramics. MO semiconductors are strikingly different from conventional inorganic semiconductors such as silicon and III–V compounds with respect to materials design concepts, electronic structure, charge transport mechanisms, defect states, thin-film processing and optoelectronic properties, thereby enabling both conventional and completely new functions. Recently, remarkable advances in MO semiconductors for electronics have been achieved, including the discovery and characterization of new transparent conducting oxides, realization of p-type along with traditional n-type MO semiconductors for transistors, p–n junctions and complementary circuits, formulations for printing MO electronics and, most importantly, commercialization of amorphous oxide semiconductors for flat panel displays. This Review surveys the uniqueness and universality of MOs versus other unconventional electronic materials in terms of materials chemistry and physics, electronic characteristics, thin-film fabrication strategies and selected applications in thin-film transistors, solar cells, diodes and memories.

1,098 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling system that automates the very labor-intensive and therefore time-heavy and expensive and therefore expensive and expensive process of designing and installing solar panels.
Abstract: Graham H. Carey,† Ahmed L. Abdelhady,‡ Zhijun Ning, Susanna M. Thon, Osman M. Bakr,‡ and Edward H. Sargent*,† †Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, Ontario M5S 3G4, Canada ‡Division of Physical Sciences and Engineering, Solar & Photovoltaics Engineering Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China Department of Electrical and Computer Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States

1,036 citations

Journal ArticleDOI
26 Aug 2016-Science
TL;DR: Recent progress in tailoring and combining quantum dots to build electronic and optoelectronic devices and new ligand chemistries and matrix materials have been reported that provide freedom to control the dynamics of excitons and charge carriers and to design device interfaces are reviewed.
Abstract: BACKGROUND The Information Age was founded on the semiconductor revolution, marked by the growth of high-purity semiconductor single crystals. The resultant design and fabrication of electronic devices exploits our ability to control the concentration, motion, and dynamics of charge carriers in the bulk semiconductor solid state. Our desire to introduce electronics everywhere is fueled by opportunities to create intelligent and enabling devices for the information, communication, consumer product, health, and energy sectors. This demand for ubiquitous electronics is spurring the design of materials that exhibit engineered physical properties and that can enable new fabrication methods for low-cost, large-area, and flexible devices. Semiconductors, which are at the heart of electronics and optoelectronics, come with high demands on chemical purity and structural perfection. Alternatives to silicon technology are expected to combine the electronic and optical properties of inorganic semiconductors (high charge carrier mobility, precise n- and p-type doping, and the ability to engineer the band gap energy) with the benefits of additive device manufacturing: low cost, large area, and the use of solution-based fabrication techniques. Along these lines, colloidal semiconductor quantum dots (QDs), which are nanoscale crystals of analogous bulk semiconductor crystals, offer a powerful platform for device engineers. Colloidal QDs may be tailored in size, shape, and composition and their surfaces functionalized with molecular ligands of diverse chemistry. At the nanoscale (typically 2 to 20 nm), quantum and dielectric confinement effects give rise to the prized size-, shape-, and composition-tunable electronic and optical properties of QDs. Surface ligands enable the stabilization of QDs in the form of colloids, allowing their bottom-up assembly into QD solids. The physical properties of QD solids can be designed by selecting the characteristics of the individual QD building blocks and by controlling the electronic communication between the QDs in the solid state. These QD solids can be engineered with application-specific electronic and optoelectronic properties for the large-area, solution-based assembly of devices. ADVANCES The large surface-to-volume ratio of QDs places a substantial importance on the composition and structure of the surface in defining the physical properties that govern the concentration, motion, and dynamics of excitations and charge carriers in QD solids. Recent studies have shown pathways to passivate uncoordinated atoms at the QD surface that act to trap and scatter charge carriers. Surface atoms, ligands, and ions can serve as dopants to control the electron affinity of QD solids. Surface ligands and surrounding matrices control the barriers to electronic, excitonic, and thermal transport between QDs and between QDs and matrices. New ligand chemistries and matrix materials have been reported that provide freedom to control the dynamics of excitons and charge carriers and to design device interfaces. These advances in engineering the chemical and physical properties of the QD surface have been translated into recent achievements of high-mobility transistors and circuits, high-quantum-yield photodetectors and light-emitting devices, and high-efficiency photovoltaic devices. OUTLOOK The dominant role and dynamic nature of the QD surface, and the strong motive to build novel QD devices, will drive the exploration of new surface chemistries and matrix materials, processes for their assembly and integration with other materials in devices, and measurements and simulations with which to map the relationship between surface chemistry and materials and device properties. Challenges remain to achieve full control over the carrier type, concentration, and mobility in the QD channel and the barriers and traps at device interfaces that limit the gain and speed of QD electronics. Surface chemistries that allow for both long carrier lifetime and high carrier mobility and the freedom to engineer the bandgap and band alignment of QDs and other device layers are needed to exploit physics particular to QDs and to advance device architectures that contribute to improving the performance of QD optoelectronics. The importance of thermal transport in QD solids and their devices is an essential emerging topic that promises to become of greater importance as we develop QD devices.

930 citations

Journal ArticleDOI
15 Aug 2013-Nature
TL;DR: This work introduces tin-doped indium oxide nanocrystals into niobium oxide glass (NbOx), and realizes a new amorphous structure as a consequence of linking it to the nanocry crystals, which demonstrates a previously unrealized optical switching behaviour that will enable the dynamic control of solar radiation transmittance through windows.
Abstract: Amorphous metal oxides are useful in optical, electronic and electrochemical devices. The bonding arrangement within these glasses largely determines their properties, yet it remains a challenge to manipulate their structures in a controlled manner. Recently, we developed synthetic protocols for incorporating nanocrystals that are covalently bonded into amorphous materials. This 'nanocrystal-in-glass' approach not only combines two functional components in one material, but also the covalent link enables us to manipulate the glass structure to change its properties. Here we illustrate the power of this approach by introducing tin-doped indium oxide nanocrystals into niobium oxide glass (NbOx), and realize a new amorphous structure as a consequence of linking it to the nanocrystals. The resulting material demonstrates a previously unrealized optical switching behaviour that will enable the dynamic control of solar radiation transmittance through windows. These transparent films can block near-infrared and visible light selectively and independently by varying the applied electrochemical voltage over a range of 2.5 volts. We also show that the reconstructed NbOx glass has superior properties-its optical contrast is enhanced fivefold and it has excellent electrochemical stability, with 96 per cent of charge capacity retained after 2,000 cycles.

732 citations

Journal ArticleDOI
TL;DR: Recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion are examined.
Abstract: The field of nanocrystal quantum dots (QDs) is already more than 30 years old, and yet continuing interest in these structures is driven by both the fascinating physics emerging from strong quantum confinement of electronic excitations, as well as a large number of prospective applications that could benefit from the tunable properties and amenability toward solution-based processing of these materials. The focus of this review is on recent advances in nanocrystal research related to applications of QD materials in lasing, light-emitting diodes (LEDs), and solar energy conversion. A specific underlying theme is innovative concepts for tuning the properties of QDs beyond what is possible via traditional size manipulation, particularly through heterostructuring. Examples of such advanced control of nanocrystal functionalities include the following: interface engineering for suppressing Auger recombination in the context of QD LEDs and lasers; Stokes-shift engineering for applications in large-area luminesce...

703 citations