scispace - formally typeset
Search or ask a question
Author

Jiyang Xie

Bio: Jiyang Xie is an academic researcher from Beijing University of Posts and Telecommunications. The author has contributed to research in topics: Feature (computer vision) & Computer science. The author has an hindex of 12, co-authored 47 publications receiving 666 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a mutual channel loss (MC-Loss) is proposed for fine-grained image categorization, which consists of two channel-specific components: a discriminality component and a diversity component.
Abstract: The key to solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great strides have been made, with complex networks designed specifically to learn part-level discriminate feature representations. In this paper, we show that it is possible to cultivate subtle details without the need for overly complicated network designs or training mechanisms – a single loss is all it takes. The main trick lies with how we delve into individual feature channels early on, as opposed to the convention of starting from a consolidated feature map. The proposed loss function, termed as mutual-channel loss (MC-Loss), consists of two channel-specific components: a discriminality component and a diversity component. The discriminality component forces all feature channels belonging to the same class to be discriminative, through a novel channel-wise attention mechanism. The diversity component additionally constraints channels so that they become mutually exclusive across the spatial dimension. The end result is therefore a set of feature channels, each of which reflects different locally discriminative regions for a specific class. The MC-Loss can be trained end-to-end, without the need for any bounding-box/part annotations, and yields highly discriminative regions during inference. Experimental results show our MC-Loss when implemented on top of common base networks can achieve state-of-the-art performance on all four fine-grained categorization datasets (CUB-Birds, FGVC-Aircraft, Flowers-102, and Stanford Cars). Ablative studies further demonstrate the superiority of the MC-Loss when compared with other recently proposed general-purpose losses for visual classification, on two different base networks. Codes are available at: https://github.com/dongliangchang/Mutual-Channel-Loss .

191 citations

Journal ArticleDOI
TL;DR: The results imply that the two-stage model proposed in the paper outperforms conventional forecast methods in terms of prediction of short-term PV power outputs and associated uncertainties.

159 citations

Book ChapterDOI
23 Aug 2020
TL;DR: PMG-Progressive multi-granularity training as mentioned in this paper proposes a progressive training strategy that effectively fuses features from different granularities, and a random jigsaw patch generator that encourages the network to learn features at specific granularity.
Abstract: Fine-grained visual classification (FGVC) is much more challenging than traditional classification tasks due to the inherently subtle intra-class object variations. Recent works are mainly part-driven (either explicitly or implicitly), with the assumption that fine-grained information naturally rests within the parts. In this paper, we take a different stance, and show that part operations are not strictly necessary – the key lies with encouraging the network to learn at different granularities and progressively fusing multi-granularity features together. In particular, we propose: (i) a progressive training strategy that effectively fuses features from different granularities, and (ii) a random jigsaw patch generator that encourages the network to learn features at specific granularities. We evaluate on several standard FGVC benchmark datasets, and show the proposed method consistently outperforms existing alternatives or delivers competitive results. The code is available at https://github.com/PRIS-CV/PMG-Progressive-Multi-Granularity-Training.

132 citations

Posted Content
TL;DR: More comprehensive data analysis methods are needed to handle the increasing amount of data and to mine more valuable information in intelligent energy networks.
Abstract: Data analysis plays an important role in the development of intelligent energy networks (IENs) This article reviews and discusses the application of data analysis methods for energy big data The installation of smart energy meters has provided a huge volume of data at different time resolutions, suggesting data analysis is required for clustering, demand forecasting, energy generation optimization, energy pricing, monitoring and diagnostics The currently adopted data analysis technologies for IENs include pattern recognition, machine learning, data mining, statistics methods, etc However, existing methods for data analysis cannot fully meet the requirements for processing the big data produced by the IENs and, therefore, more comprehensive data analysis methods are needed to handle the increasing amount of data and to mine more valuable information

111 citations

Journal ArticleDOI
TL;DR: Experimental results on two fine-grained vehicle datasets demonstrate that the CMP modified CNNs can improve the classification accuracies on the task of fine- grained vehicle classification while a massive amount of parameters are reduced.
Abstract: Convolutional neural networks (CNNs) have recently shown excellent performance on the task of fine-grained vehicle classification, where the motivation is to identify the fine-grained categories of the given vehicles. Generally speaking, the main motivation of the conventional back-propagation algorithm is to optimize the loss function. The algorithm itself does not guarantee if the extracted features are discriminative for the task of classification. Intuitively, if we can learn more discriminative features with a relatively small number of feature maps, the generalization ability of the CNNs will be significantly improved. Therefore, we propose a channel max pooling (CMP) scheme, where a new layer is inserted between the fully connected layers and the convolutional layers. The proposed CMP scheme divides the feature maps into to several sub-groups. Then, it compresses the feature maps within each sub-group into a new one. The compression is carried out by selecting the maximum value among the same locations from different feature maps. Moreover, the proposed CMP layer has the advantage that it can reduce the number of parameters via reducing the number of channels in the CNNs. Experimental results on two fine-grained vehicle datasets demonstrate that the CMP modified CNNs can improve the classification accuracies on the task of fine-grained vehicle classification while a massive amount of parameters are reduced. Moreover, it has competitive performance when comparing with the-state-of-the-art methods.

109 citations


Cited by
More filters
01 Jan 2006

3,012 citations

01 Jan 2016
TL;DR: This introduction to robust estimation and hypothesis testing helps people to enjoy a good book with a cup of coffee in the afternoon, instead they cope with some harmful bugs inside their laptop.
Abstract: Thank you very much for downloading introduction to robust estimation and hypothesis testing. As you may know, people have search numerous times for their favorite books like this introduction to robust estimation and hypothesis testing, but end up in harmful downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they cope with some harmful bugs inside their laptop.

968 citations

Journal Article
TL;DR: Calculations are developed and examined to reduce the entire quantity of Wireless access points as well as their locations in almost any given atmosphere while with the throughput needs and the necessity to ensure every place in the area can achieve a minimum of k APs.
Abstract: More particularly, calculations are developed and examined to reduce the entire quantity of Wireless access points as well as their locations in almost any given atmosphere while with the throughput needs and the necessity to ensure every place in the area can achieve a minimum of k APs. This paper concentrates on using Wireless for interacting with and localizing the robot. We've carried out thorough studies of Wireless signal propagation qualities both in indoor and outside conditions, which forms the foundation for Wireless AP deployment and communication to be able to augment how human operators communicate with this atmosphere, a mobile automatic platform is developed. Gas and oil refineries could be a harmful atmosphere for various reasons, including heat, toxic gasses, and unpredicted catastrophic failures. When multiple Wireless APs are close together, there's a possible for interference. A graph-coloring heuristic can be used to find out AP funnel allocation. Additionally, Wireless fingerprinting based localization is developed. All of the calculations implemented are examined in real life situations using the robot developed and answers are promising. For example, within the gas and oil industry, during inspection, maintenance, or repair of facilities inside a refinery, people might be uncovered to seriously high temps to have a long time, to toxic gasses including methane and H2S, and also to unpredicted catastrophic failures.

455 citations

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed and evaluated contemporary forecasting techniques for photovoltaics into power grids, and concluded that ensembles of artificial neural networks are best for forecasting short-term PV power forecast and online sequential extreme learning machine superb for adaptive networks; while Bootstrap technique optimum for estimating uncertainty.
Abstract: Integration of photovoltaics into power grids is difficult as solar energy is highly dependent on climate and geography; often fluctuating erratically. This causes penetrations and voltage surges, system instability, inefficient utilities planning and financial loss. Forecast models can help; however, time stamp, forecast horizon, input correlation analysis, data pre and post-processing, weather classification, network optimization, uncertainty quantification and performance evaluations need consideration. Thus, contemporary forecasting techniques are reviewed and evaluated. Input correlational analyses reveal that solar irradiance is most correlated with Photovoltaic output, and so, weather classification and cloud motion study are crucial. Moreover, the best data cleansing processes: normalization and wavelet transforms, and augmentation using generative adversarial network are recommended for network training and forecasting. Furthermore, optimization of inputs and network parameters, using genetic algorithm and particle swarm optimization, is emphasized. Next, established performance evaluation metrics MAE, RMSE and MAPE are discussed, with suggestions for including economic utility metrics. Subsequently, modelling approaches are critiqued, objectively compared and categorized into physical, statistical, artificial intelligence, ensemble and hybrid approaches. It is determined that ensembles of artificial neural networks are best for forecasting short term photovoltaic power forecast and online sequential extreme learning machine superb for adaptive networks; while Bootstrap technique optimum for estimating uncertainty. Additionally, convolutional neural network is found to excel in eliciting a model's deep underlying non-linear input-output relationships. The conclusions drawn impart fresh insights in photovoltaic power forecast initiatives, especially in the use of hybrid artificial neural networks and evolutionary algorithms.

446 citations