scispace - formally typeset
Search or ask a question
Author

Joachim Behlke

Other affiliations: University of Melbourne
Bio: Joachim Behlke is an academic researcher from Max Delbrück Center for Molecular Medicine. The author has contributed to research in topics: Sedimentation equilibrium & Protein structure. The author has an hindex of 30, co-authored 78 publications receiving 4373 citations. Previous affiliations of Joachim Behlke include University of Melbourne.


Papers
More filters
Journal ArticleDOI
TL;DR: SorLA acts as a sorting receptor that protects APP from processing into Abeta and thereby reduces the burden of amyloidogenic peptide formation and may increase Abeta production and plaque formation and promote spontaneous AD.
Abstract: sorLA (Sorting protein-related receptor) is a type-1 membrane protein of unknown function that is expressed in neurons. Its homology to sorting receptors that shuttle between the plasma membrane, endosomes, and the Golgi suggests a related function in neuronal trafficking processes. Because expression of sorLA is reduced in the brain of patients with Alzheimer's disease (AD), we tested involvement of this receptor in intracellular transport and processing of the amyloid precursor protein (APP) to the amyloid beta-peptide (Abeta), the principal component of senile plaques. We demonstrate that sorLA interacts with APP in vitro and in living cells and that both proteins colocalize in endosomal and Golgi compartments. Overexpression of sorLA in neurons causes redistribution of APP to the Golgi and decreased processing to Abeta, whereas ablation of sorLA expression in knockout mice results in increased levels of Abeta in the brain similar to the situation in AD patients. Thus, sorLA acts as a sorting receptor that protects APP from processing into Abeta and thereby reduces the burden of amyloidogenic peptide formation. Consequently, reduced receptor expression in the human brain may increase Abeta production and plaque formation and promote spontaneous AD.

604 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the actin polymerization-inhibiting activity of the murine small heat shock protein HSP25 is dependent on the degree of its phosphorylation and structural organization.
Abstract: Characteristic features of mammalian small heat shock proteins are their rapid phosphorylation in response to stress and mitogenic signals and their ability to form multimeric particles of 200-700 kDa and large aggregates up to 5000 kDa. Recently, a chaperoning function and an actin polymerization-inhibiting activity were demonstrated for the recombinant murine and turkey small heat shock protein, respectively. In this paper, we demonstrate that the actin polymerization-inhibiting activity of the murine small heat shock protein HSP25 is dependent on the degree of its phosphorylation and structural organization. Non-phosphorylated and phosphorylated HSP25 monomers, as well as non-phosphorylated multimeric HSP25 particles, were isolated from Ehrlich ascites tumor cells by ammonium sulfate precipitation, column chromatography, and ultracentrifugation and tested for their actin polymerization-inhibiting activity. Fluorescence spectroscopy and electron microscopy were used to monitor actin polymerization. Non-phosphorylated HSP25 monomers were active in inhibiting actin polymerization with about 90% inhibition at a 1:1 ratio of actin to HSP25, while phosphorylated HSP25 monomers and non-phosphorylated multimeric HSP25 particles were inactive. Furthermore, we present electron microscopic data on the structure of HSP25 particles.

504 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the transduction efficiency of arginine-rich peptides increases with higher peptide structural rigidity, and it is proposed that guanidinium groups are forced into maximally distant positions by cyclization, leading to enhanced cell penetration.
Abstract: In addition to endocytosis-mediated cellular uptake, hydrophilic cell-penetrating peptides are able to traverse biological membranes in a non-endocytic mode termed transduction, resulting in immediate bioavailability. Here we analysed structural requirements for the non-endocytic uptake mode of arginine-rich cell-penetrating peptides, by a combination of live-cell microscopy, molecular dynamics simulations and analytical ultracentrifugation. We demonstrate that the transduction efficiency of arginine-rich peptides increases with higher peptide structural rigidity. Consequently, cyclic arginine-rich cell-penetrating peptides showed enhanced cellular uptake kinetics relative to their linear and more flexible counterpart. We propose that guanidinium groups are forced into maximally distant positions by cyclization. This orientation increases membrane contacts leading to enhanced cell penetration.

252 citations

Journal ArticleDOI
TL;DR: It is found that the tumor-associated protein DLM-1 contains a domain with remarkable sequence similarities to ZαADAR, suggesting the existence of a family of winged-helix proteins sharing a common Z-DNA binding motif.
Abstract: The first crystal structure of a protein, the Z alpha high affinity binding domain of the RNA editing enzyme ADAR1, bound to left-handed Z-DNA was recently described. The essential set of residues determined from this structure to be critical for Z-DNA recognition was used to search the database for other proteins with the potential for Z-DNA binding. We found that the tumor-associated protein DLM-1 contains a domain with remarkable sequence similarities to Z alpha(ADAR). Here we report the crystal structure of this DLM-1 domain bound to left-handed Z-DNA at 1.85 A resolution. Comparison of Z-DNA binding by DLM-1 and ADAR1 reveals a common structure-specific recognition core within the binding domain. However, the domains differ in certain residues peripheral to the protein-DNA interface. These structures reveal a general mechanism of Z-DNA recognition, suggesting the existence of a family of winged-helix proteins sharing a common Z-DNA binding motif.

250 citations

Journal ArticleDOI
27 May 2010-Nature
TL;DR: A structural model for dynamin oligomerization and stimulated GTP hydrolysis that is consistent with previous structural predictions and has functional implications for all members of the dynamin family is proposed.
Abstract: The interferon-inducible dynamin-like myxovirus resistance protein 1 (MxA; also called MX1) GTPase is a key mediator of cell-autonomous innate immunity against pathogens such as influenza viruses. MxA partially localizes to COPI-positive membranes of the smooth endoplasmic reticulum-Golgi intermediate compartment. At the point of infection, it redistributes to sites of viral replication and promotes missorting of essential viral constituents. It has been proposed that the middle domain and the GTPase effector domain of dynamin-like GTPases constitute a stalk that mediates oligomerization and transmits conformational changes from the G domain to the target structure; however, the molecular architecture of this stalk has remained elusive. Here we report the crystal structure of the stalk of human MxA, which folds into a four-helical bundle. This structure tightly oligomerizes in the crystal in a criss-cross pattern involving three distinct interfaces and one loop. Mutations in each of these interaction sites interfere with native assembly, oligomerization, membrane binding and antiviral activity of MxA. On the basis of these results, we propose a structural model for dynamin oligomerization and stimulated GTP hydrolysis that is consistent with previous structural predictions and has functional implications for all members of the dynamin family.

230 citations


Cited by
More filters
Journal ArticleDOI
08 Feb 2008-Cell
TL;DR: The authors synthesize some of the basic principles that have emerged from studies of NF-kappaB, and aim to generate a more unified view of the regulation of the transcription factor.
Abstract: The transcription factor NF-kappaB has served as a standard for inducible transcription factors for more than 20 years. The numerous stimuli that activate NF-kappaB, and the large number of genes regulated by NF-kappaB, ensure that this transcription factor is still the subject of intense research. Here, we attempt to synthesize some of the basic principles that have emerged from studies of NF-kappaB, and we aim to generate a more unified view of NF-kappaB regulation.

3,996 citations

Journal ArticleDOI
TL;DR: An overview of established NF-kappaB signaling pathways is provided with focus on the current state of research into the mechanisms that regulate IKK activation and NF- kappaB transcriptional activity.
Abstract: The transcription factor NF-kappaB has been the focus of intense investigation for nearly two decades. Over this period, considerable progress has been made in determining the function and regulation of NF-kappaB, although there are nuances in this important signaling pathway that still remain to be understood. The challenge now is to reconcile the regulatory complexity in this pathway with the complexity of responses in which NF-kappaB family members play important roles. In this review, we provide an overview of established NF-kappaB signaling pathways with focus on the current state of research into the mechanisms that regulate IKK activation and NF-kappaB transcriptional activity.

3,829 citations

Journal ArticleDOI
TL;DR: In a recent study, this article showed that low cerebrospinal fluid (CSF) Aβ42 and amyloid-PET positivity precede other AD manifestations by many years.
Abstract: Despite continuing debate about the amyloid β‐protein (or Aβ hypothesis, new lines of evidence from laboratories and clinics worldwide support the concept that an imbalance between production and clearance of Aβ42 and related Aβ peptides is a very early, often initiating factor in Alzheimer9s disease (AD). Confirmation that presenilin is the catalytic site of γ‐secretase has provided a linchpin: all dominant mutations causing early‐onset AD occur either in the substrate (amyloid precursor protein, APP) or the protease (presenilin) of the reaction that generates Aβ. Duplication of the wild‐type APP gene in Down9s syndrome leads to Aβ deposits in the teens, followed by microgliosis, astrocytosis, and neurofibrillary tangles typical of AD. Apolipoprotein E4, which predisposes to AD in > 40% of cases, has been found to impair Aβ clearance from the brain. Soluble oligomers of Aβ42 isolated from AD patients9 brains can decrease synapse number, inhibit long‐term potentiation, and enhance long‐term synaptic depression in rodent hippocampus, and injecting them into healthy rats impairs memory. The human oligomers also induce hyperphosphorylation of tau at AD‐relevant epitopes and cause neuritic dystrophy in cultured neurons. Crossing human APP with human tau transgenic mice enhances tau‐positive neurotoxicity. In humans, new studies show that low cerebrospinal fluid (CSF) Aβ42 and amyloid‐PET positivity precede other AD manifestations by many years. Most importantly, recent trials of three different Aβ antibodies (solanezumab, crenezumab, and aducanumab) have suggested a slowing of cognitive decline in post hoc analyses of mild AD subjects. Although many factors contribute to AD pathogenesis, Aβ dyshomeostasis has emerged as the most extensively validated and compelling therapeutic target.

3,824 citations

Journal ArticleDOI
TL;DR: This review begins by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production and describes ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the Jak-STAT pathway.
Abstract: Interferon-stimulated gene (ISG) products take on a number of diverse roles. Collectively, they are highly effective at resisting and controlling pathogens. In this review, we begin by introducing interferon (IFN) and the JAK-STAT signaling pathway to highlight features that impact ISG production. Next, we describe ways in which ISGs both enhance innate pathogen-sensing capabilities and negatively regulate signaling through the JAK-STAT pathway. Several ISGs that directly inhibit virus infection are described with an emphasis on those that impact early and late stages of the virus life cycle. Finally, we describe ongoing efforts to identify and characterize antiviral ISGs, and we provide a forward-looking perspective on the ISG landscape.

2,207 citations

Journal ArticleDOI
26 Jul 2007-Nature
TL;DR: The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.
Abstract: Central to innate immunity is the sensing of pathogen-associated molecular patterns by cytosolic and membrane-associated receptors. In particular, DNA is a potent activator of immune responses during infection or tissue damage, and evidence indicates that, in addition to the membrane-associated Toll-like receptor 9, an unidentified cytosolic DNA sensor(s) can activate type I interferon (IFN) and other immune responses. Here we report on a candidate DNA sensor, previously named DLM-1 (also called Z-DNA binding protein 1 (ZBP1)), for which biological function had remained unknown; we now propose the alternative name DAI (DNA-dependent activator of IFN-regulatory factors). The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity. On the other hand, RNA interference of messenger RNA for DAI (DLM-1/ZBP1) in cells inhibits this gene induction programme upon stimulation by DNA from various sources. Moreover, DAI (DLM-1/ZBP1) binds to double-stranded DNA and, by doing so, enhances its association with the IRF3 transcription factor and the TBK1 serine/threonine kinase. These observations underscore an integral role of DAI (DLM-1/ZBP1) in the DNA-mediated activation of innate immune responses, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.

1,595 citations