scispace - formally typeset
Search or ask a question
Author

Joachim Haenicke

Bio: Joachim Haenicke is an academic researcher from Free University of Berlin. The author has contributed to research in topics: Associative learning & Spiking neural network. The author has an hindex of 2, co-authored 2 publications receiving 43 citations.

Papers
More filters
Proceedings ArticleDOI
01 Nov 2013
TL;DR: A robotic platform designed for implementing and testing spiking neural network control architectures and a neuromorphic realtime approach to sensory processing, reward-based associative plasticity and behavioral control are presented.
Abstract: Insects show a rich repertoire of goal-directed and adaptive behaviors that are still beyond the capabilities of today's artificial systems. Fast progress in our comprehension of the underlying neural computations make the insect a favorable model system for neurally inspired computing paradigms in autonomous robots. Here, we present a robotic platform designed for implementing and testing spiking neural network control architectures. We demonstrate a neuromorphic realtime approach to sensory processing, reward-based associative plasticity and behavioral control. This is inspired by the biological mechanisms underlying rapid associative learning and the formation of distributed memories in the insect.

29 citations

Journal ArticleDOI
01 May 2018
TL;DR: The absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals, suggestive of activity modulation of boutons by this neural class.
Abstract: The mushroom body (MB) in insects is known as a major center for associative learning and memory, although exact locations for the correlating memory traces remain to be elucidated. Here, we asked whether presynaptic boutons of olfactory projection neurons (PNs) in the main input site of the MB undergo neuronal plasticity during classical odor-reward conditioning and correlate with the conditioned behavior. We simultaneously measured Ca2+ responses in the boutons and conditioned behavioral responses to learned odors in honeybees. We found that the absolute amount of the neural change for the rewarded but not for the unrewarded odor was correlated with the behavioral learning rate across individuals. The temporal profile of the induced changes matched with odor response dynamics of the MB-associated inhibitory neurons, suggestive of activity modulation of boutons by this neural class. We hypothesize the circuit-specific neural plasticity relates to the learned value of the stimulus and underlies the conditioned behavior of the bees.

22 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper surveys the developments of the past decade in the field of spiking neural networks for control tasks, with particular focus on the fast emerging robotics-related applications, and highlights the primary impetuses of SNN-based robotics tasks in terms of speed, energy efficiency, and computation capabilities.
Abstract: Biological intelligence processes information using impulses or spikes, which makes those living creatures able to perceive and act in the real world exceptionally well and outperform state-of-the-art robots in almost every aspect of life. To make up the deficit, emerging hardware technologies and software knowledge in the fields of neuroscience, electronics, and computer science have made it possible to design biologically realistic robots controlled by spiking neural networks (SNNs), inspired by the mechanism of brains. However, a comprehensive review on controlling robots based on SNNs is still missing. In this paper, we survey the developments of the past decade in the field of spiking neural networks for control tasks, with particular focus on the fast emerging robotics-related applications. We first highlight the primary impetuses of SNN-based robotics tasks in terms of speed, energy efficiency, and computation capabilities. We then classify those SNN-based robotic applications according to different learning rules and explicate those learning rules with their corresponding robotic applications. We also briefly present some existing platforms that offer an interaction between SNNs and robotics simulations for exploration and exploitation. Finally, we conclude our survey with a forecast of future challenges and some associated potential research topics in terms of controlling robots based on SNNs.

121 citations

Journal ArticleDOI
TL;DR: The application to target tracking of a mobile robot in unknown environment verifies the validity of the proposed controller which encodes the preprocessed environmental and target information provided by CCD cameras, encoders and ultrasonic sensors into spike trains integrated by three-layer spiking neural network (SNN).
Abstract: In this paper, a target tracking controller based on spiking neural network is proposed for autonomous robots. This controller encodes the preprocessed environmental and target information provided by CCD cameras, encoders and ultrasonic sensors into spike trains, which are integrated by a three-layer spiking neural network (SNN). The outputs of SNN are generated based on the competition between the forward/backward neuron pair corresponding to each motor, with the weights evolved by the Hebbian learning. The application to target tracking of a mobile robot in unknown environment verifies the validity of the proposed controller.

47 citations

Journal ArticleDOI
TL;DR: A simple model where the agent continuously compares its current view with both goal and anti-goal visual memories, which are treated as attractive and repulsive respectively is proposed and overcomes the usual shortcomings and produces a step-increase in navigation effectiveness and robustness.
Abstract: Solitary foraging insects display stunning navigational behaviours in visually complex natural environments. Current literature assumes that these insects are mostly driven by attractive visual memories, which are learnt when the insect’s gaze is precisely oriented toward the goal direction, typically along its familiar route or towards its nest. That way, an insect could return home by simply moving in the direction that appears most familiar. Here we show using virtual reconstructions of natural environments that this principle suffers from fundamental drawbacks, notably, a given view of the world does not provide information about whether the agent should turn or not to reach its goal. We propose a simple model where the agent continuously compares its current view with both goal and anti-goal visual memories, which are treated as attractive and repulsive respectively. We show that this strategy effectively results in an opponent process, albeit not at the perceptual level–such as those proposed for colour vision or polarisation detection–but at the level of environmental space. This opponent process results in a signal that strongly correlates with the angular error of the current body orientation so that a single view of the world now suffices to indicate whether the agent should turn or not. By incorporating this principle into a simple agent navigating in reconstructed natural environments, we show that it overcomes the usual shortcomings and produces a step-increase in navigation effectiveness and robustness. Our findings provide a functional explanation to recent behavioural observations in ants and why and how so-called aversive and appetitive memories must be combined. We propose a likely neural implementation based on insects’ mushroom bodies’ circuitry that produces behavioural and neural predictions contrasting with previous models.

41 citations

Journal ArticleDOI
TL;DR: The most fundamental aspects of honeybee’s olfaction are reviewed, which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, the neuroanatomy and the neurophysiology of the olfactory circuit are described; finally, the cellular and molecular mechanisms leading to Olfactory memory formation are explored.
Abstract: With less than a million neurons, the western honeybee Apis mellifera is capable of complex olfactory behaviors and provides an ideal model for investigating the neurophysiology of the olfactory circuit and the basis of olfactory perception and learning. Here, we review the most fundamental aspects of honeybee's olfaction: first, we discuss which odorants dominate its environment, and how bees use them to communicate and regulate colony homeostasis; then, we describe the neuroanatomy and the neurophysiology of the olfactory circuit; finally, we explore the cellular and molecular mechanisms leading to olfactory memory formation. The vastity of histological, neurophysiological, and behavioral data collected during the last century, together with new technological advancements, including genetic tools, confirm the honeybee as an attractive research model for understanding olfactory coding and learning.

30 citations

Journal ArticleDOI
07 Jan 2020-Insects
TL;DR: The honeybee is focused on as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compared with other insect species for certain aspects, to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee.
Abstract: Mushroom bodies (MBs) are multisensory integration centers in the insect brain involved in learning and memory formation. In the honeybee, the main sensory input region (calyx) of MBs is comparatively large and receives input from mainly olfactory and visual senses, but also from gustatory/tactile modalities. Behavioral plasticity following differential brood care, changes in sensory exposure or the formation of associative long-term memory (LTM) was shown to be associated with structural plasticity in synaptic microcircuits (microglomeruli) within olfactory and visual compartments of the MB calyx. In the same line, physiological studies have demonstrated that MB-calyx microcircuits change response properties after associative learning. The aim of this review is to provide an update and synthesis of recent research on the plasticity of microcircuits in the MB calyx of the honeybee, specifically looking at the synaptic connectivity between sensory projection neurons (PNs) and MB intrinsic neurons (Kenyon cells). We focus on the honeybee as a favorable experimental insect for studying neuronal mechanisms underlying complex social behavior, but also compare it with other insect species for certain aspects. This review concludes by highlighting open questions and promising routes for future research aimed at understanding the causal relationships between neuronal and behavioral plasticity in this charismatic social insect.

28 citations