Author
Joachim Hertzberg
Other affiliations: Technical University of Dortmund, German Research Centre for Artificial Intelligence, Center for Information Technology ...read more
Bio: Joachim Hertzberg is an academic researcher from University of Osnabrück. The author has contributed to research in topics: Mobile robot & Robot. The author has an hindex of 37, co-authored 186 publications receiving 6064 citations. Previous affiliations of Joachim Hertzberg include Technical University of Dortmund & German Research Centre for Artificial Intelligence.
Topics: Mobile robot, Robot, Point cloud, Robot control, Computer science
Papers published on a yearly basis
Papers
More filters
TL;DR: An automatic system for gaging and digitalization of 3D indoor environments with an autonomous mobile robot, a reliable 3D laser range finder and three elaborated software modules is presented.
Abstract: Digital 3D models of the environment are needed in rescue and inspection robotics, facility managements and architecture. This paper presents an automatic system for gaging and digitalization of 3D indoor environments. It consists of an autonomous mobile robot, a reliable 3D laser range finder and three elaborated software modules. The first module, a fast variant of the Iterative Closest Points algorithm, registers the 3D scans in a common coordinate system and relocalizes the robot. The second module, a next best view planner, computes the next nominal pose based on the acquired 3D data while avoiding complicated obstacles. The third module, a closed-loop and globally stable motor controller, navigates the mobile robot to a nominal pose on the base of odometry and avoids collisions with dynamical obstacles. The 3D laser range finder acquires a 3D scan at this pose. The proposed method allows one to digitalize large indoor environments fast and reliably without any intervention and solves the SLAM problem. The results of two 3D digitalization experiments are presented using a fast octree-based visualization method. © 2003 Elsevier B.V. All rights reserved.
594 citations
TL;DR: The paper describes an approach and an integrated robot system for semantic mapping and explains the respective steps and their underlying algorithms, gives examples based on a working robot implementation, and discusses the findings.
Abstract: Intelligent autonomous action in ordinary environments calls for maps. 3D geometry is generally required for avoiding collision with complex obstacles and to self-localize in six degrees of freedom (6 DoF) (x, y, z positions, roll, yaw, and pitch angles). Meaning, in addition to geometry, becomes inevitable if the robot is supposed to interact with its environment in a goal-directed way. A semantic stance enables the robot to reason about objects; it helps disambiguate or round off sensor data; and the robot knowledge becomes reviewable and communicable. The paper describes an approach and an integrated robot system for semantic mapping. The prime sensor is a 3D laser scanner. Individual scans are registered into a coherent 3D geometry map by 6D SLAM. Coarse scene features (e.g., walls, floors in a building) are determined by semantic labeling. More delicate objects are then detected by a trained classifier and localized. In the end, the semantic maps can be visualized for human inspection. We sketch the overall architecture of the approach, explain the respective steps and their underlying algorithms, give examples based on a working robot implementation, and discuss the findings.
461 citations
TL;DR: This paper presents a robotic mapping method based on locally consistent 3D laser range scans that combines Iterative Closest Point scan matching, combined with a heuristic for closed loop detection and a global relaxation method, results in a highly precise mapping system.
Abstract: 6D SLAM (simultaneous localization and mapping) or 6D concurrent localization and mapping of mobile robots considers six dimensions for the robot pose, namely, the x, y, and z coordinates and the roll, yaw, and pitch angles. Robot motion and localization on natural surfaces, e.g., driving outdoor with a mobile robot, must regard these degrees of freedom. This paper presents a robotic mapping method based on locally consistent 3D laser range scans. Iterative Closest Point scan matching, combined with a heuristic for closed loop detection and a global relaxation method, results in a highly precise mapping system. A new strategy for fast data association, cached kd-tree search, leads to feasible computing times. With no ground-truth data available for outdoor environments, point relations in maps are compared to numerical relations in uncalibrated aerial images in order to assess the metric validity of the resulting 3D maps. © 2007 Wiley Periodicals, Inc.
459 citations
27 Sep 2004
TL;DR: A new solution to the simultaneous localization and mapping (SLAM) problem with six degrees of freedom with a fast variant of the Iterative Closest Points algorithm registers the 3D scans in a common coordinate system and relocalizes the robot.
Abstract: To create with an autonomous mobile robot a 3D volumetric map of a scene it is necessary to gage several 3D scans and to merge them into one consistent 3D model. This paper provides a new solution to the simultaneous localization and mapping (SLAM) problem with six degrees of freedom. Robot motion on natural surfaces has to cope with yaw, pitch and roll angles, turning pose estimation into a problem in six mathematical dimensions. A fast variant of the Iterative Closest Points algorithm registers the 3D scans in a common coordinate system and relocalizes the robot. Finally, consistent 3D maps are generated using a global relaxation. The algorithms have been tested with 3D scans taken in the Mathies mine, Pittsburgh, PA. Abandoned mines pose significant problems to society, yet a large fraction of them lack accurate 3D maps.
282 citations
TL;DR: This article describes the extension of the proposed algorithm to deal with these additional DoFs and the resulting non-linearities and yields a fast application that handles the massive amount of 3D data and the computational requirements due to the 6DoF.
Abstract: A globally consistent solution to the simultaneous localization and mapping (SLAM) problem in 2D with three degrees of freedom (DoF) poses was presented by Lu and Milios [F. Lu, E. Milios, Globally consistent range scan alignment for environment mapping, Autonomous Robots 4 (April) (1997) 333-349]. To create maps suitable for natural environments it is however necessary to consider the 6DoF pose case, namely the three Cartesian coordinates and the roll, pitch and yaw angles. This article describes the extension of the proposed algorithm to deal with these additional DoFs and the resulting non-linearities. Simplifications using Taylor expansion and Cholesky decomposition yield a fast application that handles the massive amount of 3D data and the computational requirements due to the 6DoF. Our experiments demonstrate the functionality of estimating the exact poses and their covariances in all 6DoF, leading to a globally consistent map. The correspondences between scans are found automatically by use of a simple distance heuristic.
276 citations
Cited by
More filters
[...]
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality.
Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …
33,785 citations
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher:
The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.
3,627 citations
12 May 2009
TL;DR: This paper modifications their mathematical expressions and performs a rigorous analysis on their robustness and complexity for the problem of 3D registration for overlapping point cloud views, and proposes an algorithm for the online computation of FPFH features for realtime applications.
Abstract: In our recent work [1], [2], we proposed Point Feature Histograms (PFH) as robust multi-dimensional features which describe the local geometry around a point p for 3D point cloud datasets. In this paper, we modify their mathematical expressions and perform a rigorous analysis on their robustness and complexity for the problem of 3D registration for overlapping point cloud views. More concretely, we present several optimizations that reduce their computation times drastically by either caching previously computed values or by revising their theoretical formulations. The latter results in a new type of local features, called Fast Point Feature Histograms (FPFH), which retain most of the discriminative power of the PFH. Moreover, we propose an algorithm for the online computation of FPFH features for realtime applications. To validate our results we demonstrate their efficiency for 3D registration and propose a new sample consensus based method for bringing two datasets into the convergence basin of a local non-linear optimizer: SAC-IA (SAmple Consensus Initial Alignment).
3,138 citations
24 Dec 2012
TL;DR: A large set of image sequences from a Microsoft Kinect with highly accurate and time-synchronized ground truth camera poses from a motion capture system is recorded for the evaluation of RGB-D SLAM systems.
Abstract: In this paper, we present a novel benchmark for the evaluation of RGB-D SLAM systems. We recorded a large set of image sequences from a Microsoft Kinect with highly accurate and time-synchronized ground truth camera poses from a motion capture system. The sequences contain both the color and depth images in full sensor resolution (640 × 480) at video frame rate (30 Hz). The ground-truth trajectory was obtained from a motion-capture system with eight high-speed tracking cameras (100 Hz). The dataset consists of 39 sequences that were recorded in an office environment and an industrial hall. The dataset covers a large variety of scenes and camera motions. We provide sequences for debugging with slow motions as well as longer trajectories with and without loop closures. Most sequences were recorded from a handheld Kinect with unconstrained 6-DOF motions but we also provide sequences from a Kinect mounted on a Pioneer 3 robot that was manually navigated through a cluttered indoor environment. To stimulate the comparison of different approaches, we provide automatic evaluation tools both for the evaluation of drift of visual odometry systems and the global pose error of SLAM systems. The benchmark website [1] contains all data, detailed descriptions of the scenes, specifications of the data formats, sample code, and evaluation tools.
3,050 citations
TL;DR: An open-source framework to generate volumetric 3D environment models based on octrees and uses probabilistic occupancy estimation that represents not only occupied space, but also free and unknown areas and an octree map compression method that keeps the 3D models compact.
Abstract: Three-dimensional models provide a volumetric representation of space which is important for a variety of robotic applications including flying robots and robots that are equipped with manipulators. In this paper, we present an open-source framework to generate volumetric 3D environment models. Our mapping approach is based on octrees and uses probabilistic occupancy estimation. It explicitly represents not only occupied space, but also free and unknown areas. Furthermore, we propose an octree map compression method that keeps the 3D models compact. Our framework is available as an open-source C++ library and has already been successfully applied in several robotics projects. We present a series of experimental results carried out with real robots and on publicly available real-world datasets. The results demonstrate that our approach is able to update the representation efficiently and models the data consistently while keeping the memory requirement at a minimum.
2,135 citations