scispace - formally typeset
Search or ask a question
Author

Joachim Jonuscheit

Bio: Joachim Jonuscheit is an academic researcher from Fraunhofer Society. The author has contributed to research in topics: Terahertz radiation & Terahertz spectroscopy and technology. The author has an hindex of 4, co-authored 5 publications receiving 188 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a mobile time-domain spectroscopy system that operates in reflection geometry was proposed for inspection of composite materials from the aeronautics industry, with the goal of developing a mobile mobile time domain spectroglobalization system.
Abstract: The usability of pulsed broadband terahertz radiation for the inspection of composite materials from the aeronautics industry is investigated, with the goal of developing a mobile time-domain spectroscopy system that operates in reflection geometry. A wide range of samples based on glass and carbon fiber reinforced plastics with various types of defects is examined using an imaging system; the results are evaluated both in time and frequency domain. The conductivity of carbon fibers prevents penetration of the respective samples but also allows analysis of coatings from the reflected THz pulses. Glass fiber composites are, in principle, transparent for THz radiation, but commonly with significant absorption for wavelengths >1 THz . Depending on depth, matrix material, and size, defects like foreign material inserts, delaminations, or moisture contamination can be visualized. If a defect is not too deep in the sample, its location can be correctly identified from the delay between partial reflections at the surface and the defect itself.

115 citations

Journal ArticleDOI
TL;DR: In this paper, a three-dimensional (3D) terahertz imaging system for radome inspection during industrial manufacturing processes was designed for operation within a machining center.
Abstract: Radomes protecting sensitive radar, navigational, and communications equipment of, e.g., aircraft, are strongly exposed to the environment and have to withstand harsh weather conditions and potential impacts. Besides their significance to the structural integrity of the radomes, it is often crucial to optimize the composite structures for best possible radio performance. Hence, there exists a significant interest in non-destructive testing techniques, which can be used for defect inspection of radomes in field use as well as for quality inspection during the manufacturing process. Contactless millimeter-wave and terahertz imaging techniques provide millimeter resolution and have the potential to address both application scenarios. We report on our development of a three-dimensional (3D) terahertz imaging system for radome inspection during industrial manufacturing processes. The system was designed for operation within a machining center for radome manufacturing. It simultaneously gathers terahertz depth information in adjacent frequency ranges, from 70 to 110 GHz and from 110 to 170 GHz by combining two frequency modulated continuous-wave terahertz sensing units into a single measurement device. Results from spiraliform image acquisition of a radome test sample demonstrate the successful integration of the measurement system.

57 citations

Journal ArticleDOI
TL;DR: The design of such terahertz imaging systems from a general point of view is addressed with the focus on the design of sparse line arrays, while considering objects scattering properties, and the realization of a novel highly sparse 3D teraHertz imaging system is discussed.
Abstract: Many established terahertz imaging modalities are on one side restricted by the tradeoff between resolution and field of view such as in the case of focal plane arrays and on the other side suffer from a limited depth of field such as in the case of quasi-optical terahertz imaging configurations. Furthermore, typical scanning solutions require time-consuming measurement procedures and restrict significant potential industrial deployments of terahertz imaging technology. Imaging with sparse multistatic line arrays in combination with digital beam forming (DBF) techniques enables us to overcome these limitations and offer three-dimensional (3D) terahertz image reconstructions of the object. This contribution addresses the design of such terahertz imaging systems from a general point of view with the focus on the design of sparse line arrays, while considering objects scattering properties. Based on this design concept, the realization of a novel highly sparse 3D terahertz imaging system is discussed. The sparse line array of the system is operating within a frequency range from 75 to 110 GHz and is used in combination with a conveyor in order to generate a synthetic sampling aperture. The system is capable to generate 3D terahertz images with tens of megavoxels at feed motions of up to a few 10 cm/s. Also, a sparse array design in regard to an imaging system operating at 240 GHz with integrated SiGe sensor elements is discussed. In addition, three different DBF algorithms are compared in regard to their computational efficiency.

57 citations

Journal ArticleDOI
TL;DR: This work presents an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to100 µm.
Abstract: In many industrial fields, like automotive and painting industry, the thickness of thin layers is a crucial parameter for quality control. Hence, the demand for thickness measurement techniques continuously grows. In particular, non-destructive and contact-free terahertz techniques access a wide range of thickness determination applications. However, terahertz time-domain spectroscopy based systems perform the measurement in a sampling manner, requiring fixed distances between measurement head and sample. In harsh industrial environments vibrations of sample and measurement head distort the time-base and decrease measurement accuracy. We present an interferometer-based vibration correction for terahertz time-domain measurements, able to reduce thickness distortion by one order of magnitude for vibrations with frequencies up to 100 Hz and amplitudes up to 100 µm. We further verify the experimental results by numerical calculations and find very good agreement.

28 citations

Book ChapterDOI
01 Jan 2018

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The development of THz PCA technology through the last 30 years is reviewed, the key modalities of improving device performance are identified, and literature is reviewed to summarize the progress made in these areas.
Abstract: Photoconductive antennas (PCAs) have been extensively utilized for the generation and detection of both pulsed broadband and single frequency continuous wave terahertz (THz) band radiation. These devices form the basis of many THz imaging and spectroscopy systems, which have demonstrated promising applications in various industries and research fields. The development of THz PCA technology through the last 30 years is reviewed. The key modalities of improving device performance are identified, and literature is reviewed to summarize the progress made in these areas. The goal of this review is to provide a collection of all relevant literature to bring researchers up to date on the current state and remaining challenges of THz PCA technology.

264 citations

Journal ArticleDOI
27 Sep 2019-Sensors
TL;DR: This paper is a survey of existing and upcoming industrial applications of terahertz technologies, comprising sections on polymers, paint and coatings, pharmaceuticals, electronics, petrochemicals, gas sensing, and paper and wood industries.
Abstract: This paper is a survey of existing and upcoming industrial applications of terahertz technologies, comprising sections on polymers, paint and coatings, pharmaceuticals, electronics, petrochemicals, gas sensing, and paper and wood industries. Finally, an estimate of the market size and growth rates is given, as obtained from a comparison of market reports.

147 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the recent advances in nondestructive testing and evaluation (NDT&E) as applied to the inspection of thick composite parts and sandwich structures and determine possible research prospects to address the limitations of current technologies.

126 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used reflective pulsed terahertz imaging to locate and size the forced delamination in polyetherimide resins in 3D dimensions and determined the thicknesses of the delamination and the layers constituting the laminate.
Abstract: Glass fiber-reinforced composite laminates in polyetherimide resin have been studied via terahertz imaging and ultrasonic C-scans. The forced delamination is created by inserting Teflon film between various layers inside the samples prior to consolidating the laminates. Using reflective pulsed terahertz imaging, we find high-resolution, low-artifact terahertz C-scan and B-scan images locating and sizing the delamination in three dimensions. Furthermore, terahertz imaging enables us to determine the thicknesses of the delamination and of the layers constituting the laminate. Ultrasonic C-scan images are also successfully obtained; however, in our samples with small thickness-to-wavelength ratio, detailed ultrasonic B-scan images providing quantitative information in depth cannot be obtained by 5 MHz or 10 MHz focused transducers. Comparative analysis between terahertz imaging and ultrasonic C-scans with regard to spatial resolution is carried out demonstrating that terahertz imaging provides higher spatial resolution for imaging, and can be regarded as an alternative or complementary modality to ultrasonic C-scans for this class of glass fiber-reinforced composites.

121 citations

Journal ArticleDOI
TL;DR: In this article, the authors present different industrial applications, which have addressed with their terahertz systems within the last couple of years, and demonstrate thickness determination of multilayer plastic tube walls.
Abstract: Nondestructive quality inspection with terahertz waves has become an emerging technology, especially in the automotive and aviation industries. Depending on the specific application, different terahertz systems—either fully electronic or based on optical laser pulses—cover the terahertz frequency region from 0.1 THz up to nearly 10 THz and provide high-speed volume inspections on the one hand and high-resolution thickness determination on the other hand. In this paper, we present different industrial applications, which we have addressed with our terahertz systems within the last couple of years. First, we show three-dimensional imaging of glass fiber–reinforced composites and foam structures, and demonstrate thickness determination of multilayer plastic tube walls. Then, we present the characterization of known and unknown multilayer systems down to some microns and the possibility of measuring the thickness of wet paints. The challenges of system reliability in industrial environments, e.g., under the impact of vibrations, and effective solutions are discussed. This paper gives an overview of state-of-the-art terahertz technology for industrial quality inspection. The presented principles are not limited to the automotive and aviation industries but can also be adapted to many other industrial fields.

87 citations