scispace - formally typeset
Search or ask a question
Author

Joachim Oberhammer

Other affiliations: Tokyo Institute of Technology
Bio: Joachim Oberhammer is an academic researcher from Royal Institute of Technology. The author has contributed to research in topics: Insertion loss & Surface micromachining. The author has an hindex of 24, co-authored 185 publications receiving 1945 citations. Previous affiliations of Joachim Oberhammer include Tokyo Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an adhesive wafer-level bonding technique is described in which the adhesive material is structured prior to bonding, which can be used to create encapsulated cavities of different heights and sizes for surface micromachined devices directly in the bonding layer.
Abstract: In this work we describe an adhesive wafer-level bonding technique in which the adhesive material is structured prior to bonding. This technique can be used to create encapsulated cavities of different heights and sizes for surface micromachined devices directly in the bonding layer. Benzocyclobutene (BCB) was used as the adhesive bonding material. The structuring of the BCB was done either by dry etching or by using photosensitive BCB. The process parameters needed to achieve a high bond quality while retaining the shapes of the structures in the intermediate bonding layer have been investigated extensively. Both dry-etch and photosensitive BCB were found to be suitable for selective adhesive bonding. The dry-etch BCB must be soft-baked to a polymerisation degree of 50–60% to both withstand the patterning procedure and to be sticky enough for the following bonding. Soft-baking is not necessary for the photosensitive BCB. For both types of BCB, good bond results have been achieved with a bonding pressure of 2–3 bar and full curing of the BCB at 250 °C for 1 h. Furthermore, helium leak tests have been performed to investigate the suitability of selective adhesive bonding for applications with demands on quasi-hermetic seals. Cavities created with this bonding techniques showed a leak rate between 1.4×10−8 and 4.8×10−8 kg m2 s−3 (1.4×10−7 and 4.8×10−7 mbar l s−1), which is 3–10 times higher than the limit of MIL-STD 883E. Therefore, this encapsulation technique does not provide sufficient gas-tightness to fulfill the requirements of hermetic electronic encapsulations.

123 citations

Journal ArticleDOI
TL;DR: In this paper, a ruthenium metal-contact RF microelectromechanical system switch based on a corrugated silicon oxide/silicon nitride diaphragm is presented.
Abstract: This paper presents a ruthenium metal-contact RF microelectromechanical system switch based on a corrugated silicon oxide/silicon nitride diaphragm. The corrugations are designed to substantially reduce the influence of the fabrication-induced stress in the membrane, resulting in a highly insensitive design to process parameter variations. Furthermore, a novel multilayer metal-contact concept, comprising a 50-nm chromium/50-nm ruthenium/500-nm gold/50-nm ruthenium structure, is introduced to improve the contact reliability by having a hard-metal surface of ruthenium without substantial compromise in the contact and transmission-line resistances, which is shown by theoretical analysis of the contact physics and confirmed by measurement results. The contact resistance of the novel metallization stack is investigated for different contact pressures and is compared to pure-gold contacts. The contact reliability is investigated for different dc signal currents. At a measurement current of 1.6 mA, the Ru-Au-Ru contacts have an average lifetime of about 100 million cycles, whereas the Au-Au contacts reach 24 million cycles only. For larger signal currents, the metal contacts have proven to be more robust over the Au-Au contacts by a factor of ten. The measured pull-in voltage is reduced significantly from 61 V for flat diaphragm to 36 V for corrugated diaphragm with the introduction of corrugation. The measured RF isolation with a nominal contact separation of 5 mum is better than -30 dB up to 4 GHz and still -21 dB at 15 GHz, whereas the insertion loss of the fully packaged switch including its transmission line is about -0.7 dB up to 4 GHz and -2.8 dB at 15 GHz.

78 citations

Journal ArticleDOI
TL;DR: In this paper, a low temperature wafer-level encapsulation technique to hermetically seal adhesive-bonded microsystem structures by cladding the adhesive with an additional diffusion barrier is presented.
Abstract: In this paper, we present a low temperature wafer-level encapsulation technique to hermetically seal adhesive bonded microsystem structures by cladding the adhesive with an additional diffusion barrier. Two wafers containing cavities for MEMS devices were bonded together using benzocyclobutene (BCB). The devices were sealed by a combined dicing and self-aligning etching technique and by finally coating the structures with evaporated gold or PECVD silicon nitride. The sealing layer was inspected visually by SEM and helium leak tests were carried out. Devices sealed with silicon nitride and with known damage of the sealing layer showed a helium leak rate of about 7–14 times higher than the background level. Devices of the same size without damage in the sealing layer had a leak rate of only 1.5 times higher than the background level. Experiments with evaporated gold as cladding layer revealed leaking cracks in the film even up to a gold thickness of 5 μm. The sealing technique with silicon nitride shows a significant improvement of the hermeticity properties of adhesive bonded cavities, making this bonding technique suitable for applications with certain demands on gas-tightness.

78 citations

Journal ArticleDOI
TL;DR: The permittivity of many types of cell suspensions and tissues was characterized up to frequencies of approximately 100 MHz, and a vast amount of data on the dielectric properties of different tissue types in the microwave range was published.
Abstract: At the end of the 19th century, researchers observed that biological substances have frequency- dependent electrical properties and that tissue behaves "like a capacitor" [1]. Consequently, in the first half of the 20th century, the permittivity of many types of cell suspensions and tissues was characterized up to frequencies of approximately 100 MHz. From the measurements, conclusions were drawn, in particular, about the electrical properties of the cell membranes, which are the main contributors to the tissue impedance at frequencies below 10 MHz [2]. In 1926, a study found a significant different permittivity for breast cancer tissue compared with healthy tissue at 20 kHz [3]. After World War II, new instrumentation enabled measurements up to 10 GHz, and a vast amount of data on the dielectric properties of different tissue types in the microwave range was published [4]-[6].

77 citations

Journal ArticleDOI
TL;DR: In this article, a contact printing method was applied for 0-level glass-lid packaging done by full-wafer bonding with a patterned adhesive layer, where the pattern in the adhesive layer was "inked" with viscous polymer by pressing the substrate toward an auxiliary wafer with a thin liquid polymer layer.
Abstract: Adhesive wafer bonding with a patterned polymer layer is increasingly attracting attention as cheap and simple 0-level packaging technology for microstructures, because the patterned polymer both fulfills the bonding function and determines the volumes between the two wafers housing the devices to be packaged. To be able to pattern a polymer, it has to be cross-linked to a certain degree which makes the material rigid and less adhesive for the bonding afterward. In this paper, a simple method is presented which combines the advantages of a patterned adhesive layer with the advantages of a liquid polymer phase before the bonding. The pattern in the adhesive layer is "inked" with viscous polymer by pressing the substrate toward an auxiliary wafer with a thin liquid polymer layer. Then, the substrate with the inked pattern is finally bonded to the top wafer. Benzocyclobuene (BCB) was used both for the patterned structures and as the "ink". Tensile bond strength tests were carried out on patterned adhesive bonded samples fabricated with and without this contact printing method. The bonding yield is significantly improved with the contact printing method, the fabrication procedure is more robust and the test results show that the bond strength is at least 2 times higher. An investigation of the samples' failure mechanisms revealed that the bond strength even exceeds the adhesion forces of the BCB to the substrate. Furthermore, the BCB contact printing method was successfully applied for 0-level glass-lid packaging done by full-wafer bonding with a patterned adhesive layer. Here, the encapsulating lids are separated after the bonding by dicing the top wafer independently of the bottom wafer.

67 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

01 Jan 2017
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as mentioned in this paper provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

690 citations

Journal ArticleDOI
TL;DR: A review of the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications can be found in this paper, where the main advantages of this technique include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers.
Abstract: Wafer bonding with intermediate polymer adhesives is an important fabrication technique for advanced microelectronic and microelectromechanical systems, such as three-dimensional integrated circuits, advanced packaging, and microfluidics. In adhesive wafer bonding, the polymer adhesive bears the forces involved to hold the surfaces together. The main advantages of adhesive wafer bonding include the insensitivity to surface topography, the low bonding temperatures, the compatibility with standard integrated circuit wafer processing, and the ability to join different types of wafers. Compared to alternative wafer bonding techniques, adhesive wafer bonding is simple, robust, and low cost. This article reviews the state-of-the-art polymer adhesive wafer bonding technologies, materials, and applications.

494 citations

Journal ArticleDOI
TL;DR: Critical selection criteria are included for pumps and valves to aid in determining the pumping mechanism that is most appropriate for a given application and important limitations or incompatibilities are addressed.
Abstract: Micropumping has emerged as a critical research area for many electronics and biological applications. A significant driving force underlying this research has been the integration of pumping mechanisms in micro total analysis systems and other multi-functional analysis techniques. Uses in electronics packaging and micromixing and microdosing systems have also capitalized on novel pumping concepts. The present work builds upon a number of existing reviews of micropumping strategies by focusing on the large body of micropump advances reported in the very recent literature. Critical selection criteria are included for pumps and valves to aid in determining the pumping mechanism that is most appropriate for a given application. Important limitations or incompatibilities are also addressed. Quantitative comparisons are provided in graphical and tabular forms.

467 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a wideband ultra wideband (UWB) communication protocol with a low EIRP level (−41.3dBm/MHz) for unlicensed operation between 3.1 and 10.6 GHz.
Abstract: Before the emergence of ultra-wideband (UWB) radios, widely used wireless communications were based on sinusoidal carriers, and impulse technologies were employed only in specific applications (e.g. radar). In 2002, the Federal Communication Commission (FCC) allowed unlicensed operation between 3.1–10.6 GHz for UWB communication, using a wideband signal format with a low EIRP level (−41.3dBm/MHz). UWB communication systems then emerged as an alternative to narrowband systems and significant effort in this area has been invested at the regulatory, commercial, and research levels.

452 citations