scispace - formally typeset
Search or ask a question
Author

Joan F. Brennecke

Other affiliations: University of Notre Dame, Toyota
Bio: Joan F. Brennecke is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Ionic liquid & Racism. The author has an hindex of 64, co-authored 291 publications receiving 23535 citations. Previous affiliations of Joan F. Brennecke include University of Notre Dame & Toyota.


Papers
More filters
Journal ArticleDOI
01 May 1999-Nature
TL;DR: In this article, the authors showed that non-volatile organic compounds can be extracted from ionic liquids using supercritical carbon dioxide, which is widely used to extract large organic compounds with minimal pollution.
Abstract: Many organic solvents evaporate into the atmosphere with detrimental effects on the environment and human health. But room-temperature ionic liquids, with low viscosity and no measurable vapour pressure1, can be used as environmentally benign media for a range of industrially important chemical processes2,3,4,5,6, despite uncertainties about thermal stability and sensitivity to oxygen and water. It is difficult to recover products, however, as extraction with water7 works only for hydrophilic products, distillation is not suitable for poorly volatile or thermally labile products, and liquid-liquid extraction using organic solvents results in cross-contamination. We find that non-volatile organic compounds can be extracted from ionic liquids using supercritical carbon dioxide, which is widely used to extract large organic compounds with minimal pollution8. Carbon dioxide dissolves in the liquid to facilitate extraction, but the ionic liquid does not dissolve in carbon dioxide, so pure product can be recovered.

1,748 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present density as a function of temperature, melting temperatures, glass transition temperatures, decomposition temperatures, and heat capacities for 13 ionic liquids, including 1-butyl-3-methylimidazolium trifluoromethanesulfonate.
Abstract: Ionic liquids (ILs) are salts that are liquid at low temperatures, usually including the region around room temperature. They are under intense investigation, especially as replacement solvents for reactions and separations, since they exhibit negligible vapor pressure and would not, therefore, contribute to air pollution. Clearly, basic thermophysical properties are vital for design and evaluation for these applications. We present density as a function of temperature, melting temperatures, glass-transition temperatures, decomposition temperatures, and heat capacities as a function of temperature for a series of 13 of the popular imidazolium-based ILs. The ionic liquids investigated here are 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium tris(trifluoromethylsul...

1,438 citations

Journal ArticleDOI
TL;DR: Experimental and molecular modeling studies are conducted to investigate the underlying mechanisms for the high solubility of CO2 in imidazolium-based ionic liquids and it is found that the bis(trifluoromethylsulfonyl)imide anion has the greatest affinity for CO2, while there is little difference in CO2solubility between ionsic liquids having the tetrafluoroborate or hexafluorophosphate anion.
Abstract: Experimental and molecular modeling studies are conducted to investigate the underlying mechanisms for the high solubility of CO2 in imidazolium-based ionic liquids. CO2 absorption isotherms at 10, 25, and 50 °C are reported for six different ionic liquids formed by pairing three different anions with two cations that differ only in the nature of the “acidic” site at the 2-position on the imidazolium ring. Molecular dynamics simulations of these two cations paired with hexafluorophosphate in the pure state and mixed with CO2 are also described. Both the experimental and the simulation results indicate that the anion has the greatest impact on the solubility of CO2. Experimentally, it is found that the bis(trifluoromethylsulfonyl)imide anion has the greatest affinity for CO2, while there is little difference in CO2 solubility between ionic liquids having the tetrafluoroborate or hexafluorophosphate anion. The simulations show strong organization of CO2 about hexafluorophosphate anions, but only small diffe...

1,352 citations

Journal ArticleDOI
TL;DR: Ionic liquids with the bis(trifluoromethylsulfonyl) imide anion had the largest affinity for CO(2), regardless of whether the cation was imidazolium, pyrrolidinium, or tetraalkylammonium.
Abstract: This work presents the results of solubility measurements for a series of gases in 1-n-butyl-3-methyl imidazolium tetrafluoroborate and 1-n-butyl-3-methyl imidazolium bis(trifluoromethylsulfonyl) imide. The gases considered include benzene, carbon dioxide, nitrous oxide, ethylene, ethane, oxygen, and carbon monoxide. Carbon dioxide and oxygen solubilities are also reported in methyl-tributylammonium bis(trifluoromethylsulfonyl) imide, butyl-methyl pyrrolidinium bis(trifluoromethylsulfonyl) imide, and tri-isobutyl-methyl phosphonium p-toluenesulfonate. We report the associated Henry's constants and enthalpies and entropies of absorption. In general, benzene, followed by carbon dioxide and nitrous oxide, have the highest solubilities and strongest interactions with the ionic liquids, followed by ethylene and ethane. Oxygen had very low solubilities and weak interactions. Carbon monoxide had a solubility below the detection limit of our apparatus. Ionic liquids with the bis(trifluoromethylsulfonyl) imide ani...

925 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: There are indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity, which opens up a wide field for future investigations into this new class of solvents in catalytic applications.
Abstract: Ionic liquids are salts that are liquid at low temperature (<100 degrees C) which represent a new class of solvents with nonmolecular, ionic character. Even though the first representative has been known since 1914, ionic liquids have only been investigated as solvents for transition metal catalysis in the past ten years. Publications to date show that replacing an organic solvent by an ionic liquid can lead to remarkable improvements in well-known processes. Ionic liquids form biphasic systems with many organic product mixtures. This gives rise to the possibility of a multiphase reaction procedure with easy isolation and recovery of homogeneous catalysts. In addition, ionic liquids have practically no vapor pressure which facilitates product separation by distillation. There are also indications that switching from a normal organic solvent to an ionic liquid can lead to novel and unusual chemical reactivity. This opens up a wide field for future investigations into this new class of solvents in catalytic applications.

5,387 citations

Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale and might combine the advantages of both homogeneous and heterogeneous catalysis.
Abstract: For economical and ecological reasons, synthetic chemists are confronted with the increasing obligation of optimizing their synthetic methods. Maximizing efficiency and minimizing costs in the production of molecules and macromolecules constitutes, therefore, one of the most exciting challenges of synthetic chemistry.1-3 The ideal synthesis should produce the desired product in 100% yield and selectivity, in a safe and environmentally acceptable process.4 It is now well recognized that organometallic homogeneous catalysis offers one of the most promising approaches for solving this basic problem.2 Indeed, many of these homogeneous processes occur in high yields and selectivities and under mild reaction conditions. Most importantly, the steric and electronic properties of these catalysts can be tuned by varying the metal center and/or the ligands, thus rendering tailor-made molecular and macromolecular structures accessible.5,6 Despite the fact that various efficient methods, based on organometallic homogeneous catalysis, have been developed over the last 30 years on the laboratory scale, the industrial use of homogeneous catalytic processes is relatively limited.7 The separation of the products from the reaction mixture, the recovery of the catalysts, and the need for organic solvents are the major disadvantages in the homogeneous catalytic process. For these reasons, many homogeneous processes are not used on an industrial scale despite their benefits. Among the various approaches to address these problems, liquidliquid biphasic catalysis (“biphasic catalysis”) has emerged as one of the most important alternatives.6-11 The concept of this system implies that the molecular catalyst is soluble in only one phase whereas the substrates/products remain in the other phase. The reaction can take place in one (or both) of the phases or at the interface. In most cases, the catalyst phase can be reused and the products/substrates are simply removed from the reaction mixture by decantation. Moreover, in these biphasic systems it is possible to extract the primary products during the reaction and thus modulate the product selectivity.12 For a detailed discussion about this and other concepts of homogeneous catalyst immobilization, the reader is referred elsewhere.6,7 These biphasic systems might combine the advantages of both homogeneous (greater catalyst efficiency and mild reaction conditions) and heterogeneous (ease of catalyst recycling and separation of the products) catalysis. The advent of water-soluble organometallic complexes, especially those based on sulfonated phosphorus-containing ligands, has enabled various biphasic catalytic reactions to be conducted on an industrial scale.13-15 However, the use of water as a * Corresponding author. Fax: ++ 55 51 3316 73 04. E-mail: dupont@iq.ufrgs.br. 3667 Chem. Rev. 2002, 102, 3667−3692

3,483 citations