scispace - formally typeset
Search or ask a question
Author

Joan G. Lynam

Other affiliations: University of Nevada, Reno
Bio: Joan G. Lynam is an academic researcher from Louisiana Tech University. The author has contributed to research in topics: Hydrothermal carbonization & Biomass. The author has an hindex of 18, co-authored 38 publications receiving 2001 citations. Previous affiliations of Joan G. Lynam include University of Nevada, Reno.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a pretreatment process for making a homogenized, carbon rich, and energy-dense solid fuel, called biochar, from lignocellulosic biomass is described.
Abstract: Hydrothermal carbonization (HTC) is a pretreatment process for making a homogenized, carbon rich, and energy-dense solid fuel, called biochar, from lignocellulosic biomass. Corn stover, miscanthus, switch grass, and rice hulls were treated with hot compressed water at 200, 230, and 260 °C for 5 min. Mass yield is as low as 41% of the raw biomass, and decreases with increasing HTC temperature. Higher heating values (HHV) increase up to 55% with HTC pretreatment temperature. Up to 90% of calcium, magnesium, sulfur, phosphorus, and potassium were removed with HTC treatment possibly due to hemicellulose removal. At a HTC temperature of 260 °C, some structural Si was removed. All heavy metals were reduced by HTC treatment. The slagging and fouling indices are reduced with HTC treatment relative to that of untreated biomass. Chlorine content, a concern only for raw and HTC 200 switch grass, was reduced to a low slagging range at 230 °C, and 260 °C. Alkali index was medium for raw biomass but decreased by HTC.

376 citations

Journal ArticleDOI
01 Jan 2014
TL;DR: An overview of the HTC process parameters, reactions, and the use of hydrochar for energy and crop production can be found in this paper, where the authors also discuss the potential for producing a variety of products, from fuel to supercapacitors, from carbon nanospheres to low cost adsorbents, from fertilizers to soil amenders.
Abstract: Hydrothermal carbonization (HTC) is a thermochemical pretreatment process where biomass is treated under hot compressed water to produce hydrochar. Hydrochar is a stable, hydrophobic, friable solid product, which has a fuel value similar to that of lignite coal. Among its other advantages, its capability to handle wet feed makes the HTC process most attractive. The complex reaction chemistry of HTC offers a huge potential for producing a variety of products, from fuel to supercapacitors, from carbon nanospheres to low cost adsorbents, from fertilizers to soil amenders. Hydrochar opens possibilities for replacing coal in existing coal-power plants. Its high surface area and adsorption characteristics make it compatible for use in supercapacitors. Hydrochar also contains high amounts of stable carbon and other nutrients, which are essential for soil amendment. Moreover, the HTC process liquid, especially if a short retention time is used, contains potentially toxic substances like phenols, furfurals, and their derivatives, which open opportunities for anaerobic digestion to produce biogas. This review paper gives an overview of the HTC process parameters, reactions, and the use of hydrochar for energy and crop production.

277 citations

Journal ArticleDOI
TL;DR: This study shows the DESs to be capable of preferentially dissolving lignin at 60°C, andThermogravimetric analysis show DES to be stable at typical biomass processing temperatures.

251 citations

Journal ArticleDOI
TL;DR: Addition of acetic acid and/or LiCl to hydrothermal carbonization each contribute to increased HHV and reduced mass yield of the solid product.

201 citations

Journal ArticleDOI
TL;DR: The reaction kinetics and effects of particle size on HTC were investigated and a simple reaction mechanism is proposed and validated, in which both hemicellulose and cellulose degrade in parallel first-order reactions.

183 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of biochar production technologies, biochar properties, and recent advances in the removal of heavy metals, organic pollutants and other inorganic pollutants using biochar is provided.

1,301 citations

Journal ArticleDOI
TL;DR: In this paper, an updated review on the fundamentals and reaction mechanisms of the slow-pyrolysis and hydrothermal carbonization (HTC) processes, identifies research gaps, and summarizes the physicochemical characteristics of chars for different applications in the industry.
Abstract: Slow-pyrolysis of biomass for the production of biochar, a stable carbon-rich solid by-product, has gained considerable interest due to its proven role and application in the multidisciplinary areas of science and engineering. An alternative to slow-pyrolysis is a relatively new process called hydrothermal carbonization (HTC) of biomass, where the biomass is treated with hot compressed water instead of drying, has shown promising results. The HTC process offers several advantages over conventional dry-thermal pre-treatments like slow-pyrolysis in terms of improvements in the process performances and economic efficiency, especially its ability to process wet feedstock without pre-drying requirement. Char produced from both the processes exhibits significantly different physiochemical properties that affect their potential applications, which includes but is not limited to carbon sequestration, soil amelioration, bioenergy production, and wastewater pollution remediation. This paper provides an updated review on the fundamentals and reaction mechanisms of the slow-pyrolysis and HTC processes, identifies research gaps, and summarizes the physicochemical characteristics of chars for different applications in the industry. The literature reviewed in this study suggests that hydrochar (HTC char) is a valuable resource and is superior to biochar in certain ways. For example, it contains a reduced alkali and alkaline earth and heavy metal content, and an increased higher heating value compared to the biochar produced at the same operating process temperature. However, its effective utilization would require further experimental research and investigations in terms of feeding of biomass against pressure; effects and relationships among feedstocks compositions, hydrochar characteristics and process conditions; advancement in the production technique(s) for improvement in the physicochemical behavior of hydrochar; and development of a diverse range of processing options to produce hydrochar with characteristics required for various industry applications.

1,061 citations

Journal ArticleDOI
TL;DR: A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in deep eutectic solvents, and highlights recent research efforts to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding.
Abstract: Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.

911 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a comprehensive review of research progress in this area, drawing on major contributions from two major research groups of the authors on torrefaction and densification at Canada and Taiwan as well as literatures.
Abstract: Torrefaction is a mild pyrolysis, which has been explored for the pretreatment of biomass to increase the heating value and hydrophobicity. Due to its potential applications for making torrefied pellets, which can be used as a high quality feedstock in gasification for high quality syngas production and as a substitute for coal in thermal power plants and metallurgical processes, torrefaction and densification have attracted great interest in recent years from both academia and bioenergy industry. This paper provides a comprehensive review of research progresses in this area, drawing on major contributions from two major research groups of the authors on torrefaction and densification at Canada and Taiwan as well as literatures. It is revealed that torrefaction of various biomass species and their major components, lignin, cellulose and hemicelluloses have been extensively studied in thermogravimetric apparatus (TGA) under both inert (N 2 ) and oxidative (O 2 , H 2 O) environments to elucidate the weight loss as a function of temperature, particle size and time. It was found that the higher heating value and saturated water uptake of torrefied biomass were a strong function of weight loss, which represents the degree of torrefaction. When torrefied sawdust is compressed into torrefied pellets, more mechanical energy is consumed and higher die temperature is required to make torrefied pellets of similar density and hardness as regular pellets. Simple economics analyses based on laboratory scale experimental data showed that because of the potential savings from pellets transport, handling and storage logistics, the overall cost for torrefied pellets can be lower than regular pellets in European market for both European and Canadian pellets. The gasification could be improved in terms of both energy efficiency and syngas quality because of the removal of oxygenated volatile compounds from torrefied biomass.

864 citations

Journal ArticleDOI
TL;DR: A systematic and critical review of the production of activated carbon from hydrochars is presented in this paper, where the current knowledge gaps and challenges involved in the hydrothermal carbonization of biomass waste are critically evaluated with suggestions for further research.

812 citations