scispace - formally typeset
Search or ask a question
Author

Joan King Salwen

Bio: Joan King Salwen is an academic researcher from Stanford University. The author has contributed to research in topics: Asparagopsis taxiformis & Enteric fermentation. The author has an hindex of 4, co-authored 8 publications receiving 126 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors evaluated quantitatively the response of cows consuming Asparagopsis armata on methane production (g/kg), yield, feed intake, and milk yield.

145 citations

Posted ContentDOI
16 Jul 2020-bioRxiv
TL;DR: The persistent reduction of CH4 by A. taxiformis supplementation suggests that this is a viable feed additive to significantly decrease the carbon footprint of ruminant livestock and potentially increase production efficiency.
Abstract: The red macroalgae (seaweed) Asparagopsis spp. has shown to reduce ruminant enteric methane (CH4) production up to 99% in vitro. The objective of this study was to determine the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), CH4 yield (g CH4/kg dry matter intake (DMI)), average daily gain (ADG), feed conversion efficiency (FCE), and carcass and meat quality in growing beef steers. Twenty-one Angus-Hereford beef steers were randomly allocated to one of three treatment groups: 0% (Control), 0.25% (Low Dose; LD), and 0.5% (High Dose; HD) A. taxiformis inclusion based on organic matter intake. Steers were fed 3 diets: high, medium, and low forage total mixed ration (TMR) representing typical life-stage diets of growing beef steers. The LD and HD treatments over 147 days reduced enteric CH4 yield 45 and 68%, respectively; however, there was an interaction between TMR type and the magnitude of CH4 yield reduction. Supplementing the low forage TMR reduced CH4 yield 69.8% (P

107 citations

Journal ArticleDOI
12 Feb 2019
TL;DR: Fermentation in a semi-continuous in-vitro rumen system suggests that A. taxiformis can reduce methane production from enteric fermentation in dairy cattle by 95% when added at a 5% OM inclusion rate without any obvious negative impacts on volatile fatty acid production.
Abstract: Recent studies using batch-fermentation suggest that the red macroalgae Asparagopsis taxiformis has the potential to reduce methane (CH4) production from beef cattle by up to ~ 99% when added to Rhodes grass hay; a common feed in the Australian beef industry. These experiments have shown significant reductions in CH4 without compromising other fermentation parameters (i.e. volatile fatty acid production) with A. taxiformis organic matter (OM) inclusion rates of up to 5%. In the study presented here, A. taxiformis was evaluated for its ability to reduce methane production from dairy cattle fed a mixed ration widely utilized in California, the largest milk producing state in the US. Fermentation in a semi-continuous in-vitro rumen system suggests that A. taxiformis can reduce methane production from enteric fermentation in dairy cattle by 95% when added at a 5% OM inclusion rate without any obvious negative impacts on volatile fatty acid production. High-throughput 16S ribosomal RNA (rRNA) gene amplicon sequencing showed that seaweed amendment effects rumen microbiome consistent with the Anna Karenina hypothesis, with increased β-diversity, over time scales of approximately 3 days. The relative abundance of methanogens in the fermentation vessels amended with A. taxiformis decreased significantly compared to control vessels, but this reduction in methanogen abundance was only significant when averaged over the course of the experiment. Alternatively, significant reductions of CH4 in the A. taxiformis amended vessels was measured in the early stages of the experiment. This suggests that A. taxiformis has an immediate effect on the metabolic functionality of rumen methanogens whereas its impact on microbiome assemblage, specifically methanogen abundance, is delayed. The methane reducing effect of A. taxiformis during rumen fermentation makes this macroalgae a promising candidate as a biotic methane mitigation strategy for dairy cattle. But its effect in-vivo (i.e. in dairy cattle) remains to be investigated in animal trials. Furthermore, to obtain a holistic understanding of the biochemistry responsible for the significant reduction of methane, gene expression profiles of the rumen microbiome and the host animal are warranted.

86 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined locally sourced red seaweed A. taxiformis and brown seaweed Zonaria farlowii for their ability to mitigate methane production when added to feed widely used in the Californian dairy industry.
Abstract: With increasing interest in feed-based methane mitigation strategies and regional legal directives aimed at methane production from the agricultural sector, identifying local sources of biological feed additives will be critical for rendering these strategies affordable. In a recent study, the red alga Asparagopsis taxiformis harvested offshore Australia was identified as highly effective for reducing methane production from enteric fermentation. Due to potential difference in methane-reduction potential and the financial burden associated with transporting the harvested seaweed over long distances, we examined locally sourced red seaweed A. taxiformis and brown seaweed Zonaria farlowii for their ability to mitigate methane production when added to feed widely used in the Californian dairy industry. At a dose rate of 5% dry matter (DM), California-sourced A. taxiformis and Z. farlowii reduced methane production by up to 74% (p ≤ 0.05) and 11% (p ≤ 0.05) during in vitro rumen fermentation respectively. No effect on CO2 production was observed for either seaweed. The measured decrease in methane production induced by A. taxiformis and Z. farlowii amendment, suggest that these local macroalgae are indeed promising candidates for biotic methane mitigation strategies in California, the largest milk producing state in the US. To determine their real potential as methane mitigating feed supplements in the dairy industry, their effect in vivo will need to be investigated.

16 citations

Posted ContentDOI
05 Oct 2018-bioRxiv
TL;DR: In this paper, the red alga Asparagopsis taxiformis and brown seaweed Zonaria farlowii collected in the nearshore waters off Santa Catalina Island, CA, USA, for their ability to mitigate methane production during in-vitro rumen fermentation.
Abstract: With increasing interest in feed based methane mitigation strategies, fueled by local legal directives aimed at methane production from the agricultural sector in California, identifying local sources of biological feed additives will be critical in keeping the implementation of these strategies affordable. In a recent study, the red alga Asparagopsis taxiformis stood out as the most effective species of seaweed to reduce methane production from enteric fermentation. Due to the potential differences in effectiveness based on the location from where A. taxiformis is collected and the financial burden of collection and transport, we tested the potential of A. taxiformis, as well as the brown seaweed Zonaria farlowii collected in the nearshore waters off Santa Catalina Island, CA, USA, for their ability to mitigate methane production during in-vitro rumen fermentation. At a dose rate of 5% dry matter (DM), A. taxiformis reduced methane production by 74% (p ≤ 0.01) and Z. farlowii reduced methane production by 11% (p ≤ 0.04) after 48 hours and 24 hours of in-vitro rumen fermentation respectively. The methane reducing effect of A. taxiformis and Z. farlowii described here make these local macroalgae promising candidates for biotic methane mitigation strategies in the largest milk producing state in the US. To determine their real potential as methane mitigating feed supplements in the dairy industry, their effect in-vivo requires investigation.

9 citations


Cited by
More filters
Journal ArticleDOI
19 Aug 2020-Nature
TL;DR: Modelled supply curves show that, with policy reform and technological innovation, the production of food from the sea may increase sustainably, perhaps supplying 25% of the increase in demand for meat products by 2050.
Abstract: Global food demand is rising, and serious questions remain about whether supply can increase sustainably1 Land-based expansion is possible but may exacerbate climate change and biodiversity loss, and compromise the delivery of other ecosystem services2–6 As food from the sea represents only 17% of the current production of edible meat, we ask how much food we can expect the ocean to sustainably produce by 2050 Here we examine the main food-producing sectors in the ocean—wild fisheries, finfish mariculture and bivalve mariculture—to estimate ‘sustainable supply curves’ that account for ecological, economic, regulatory and technological constraints We overlay these supply curves with demand scenarios to estimate future seafood production We find that under our estimated demand shifts and supply scenarios (which account for policy reform and technology improvements), edible food from the sea could increase by 21–44 million tonnes by 2050, a 36–74% increase compared to current yields This represents 12–25% of the estimated increase in all meat needed to feed 98 billion people by 2050 Increases in all three sectors are likely, but are most pronounced for mariculture Whether these production potentials are realized sustainably will depend on factors such as policy reforms, technological innovation and the extent of future shifts in demand Modelled supply curves show that, with policy reform and technological innovation, the production of food from the sea may increase sustainably, perhaps supplying 25% of the increase in demand for meat products by 2050

346 citations

Journal ArticleDOI
27 Jan 2021-Nature
TL;DR: In this paper, the authors present country-, process-, GHG- and product-specific inventories of global land-use emissions from 1961 to 2017, decompose key demographic, economic and technical drivers of emissions and assess the uncertainties and the sensitivity of results to different accounting assumptions.
Abstract: Historically, human uses of land have transformed and fragmented ecosystems1,2, degraded biodiversity3,4, disrupted carbon and nitrogen cycles5,6 and added prodigious quantities of greenhouse gases (GHGs) to the atmosphere7,8. However, in contrast to fossil-fuel carbon dioxide (CO2) emissions, trends and drivers of GHG emissions from land management and land-use change (together referred to as ‘land-use emissions’) have not been as comprehensively and systematically assessed. Here we present country-, process-, GHG- and product-specific inventories of global land-use emissions from 1961 to 2017, we decompose key demographic, economic and technical drivers of emissions and we assess the uncertainties and the sensitivity of results to different accounting assumptions. Despite steady increases in population (+144 per cent) and agricultural production per capita (+58 per cent), as well as smaller increases in emissions per land area used (+8 per cent), decreases in land required per unit of agricultural production (–70 per cent) kept global annual land-use emissions relatively constant at about 11 gigatonnes CO2-equivalent until 2001. After 2001, driven by rising emissions per land area, emissions increased by 2.4 gigatonnes CO2-equivalent per decade to 14.6 gigatonnes CO2-equivalent in 2017 (about 25 per cent of total anthropogenic GHG emissions). Although emissions intensity decreased in all regions, large differences across regions persist over time. The three highest-emitting regions (Latin America, Southeast Asia and sub-Saharan Africa) dominate global emissions growth from 1961 to 2017, driven by rapid and extensive growth of agricultural production and related land-use change. In addition, disproportionate emissions are related to certain products: beef and a few other red meats supply only 1 per cent of calories worldwide, but account for 25 per cent of all land-use emissions. Even where land-use change emissions are negligible or negative, total per capita CO2-equivalent land-use emissions remain near 0.5 tonnes per capita, suggesting the current frontier of mitigation efforts. Our results are consistent with existing knowledge—for example, on the role of population and economic growth and dietary choice—but provide additional insight into regional and sectoral trends. Trends in the rate of region- and sector-specific land-use greenhouse gas emissions in 1961–2017 show an acceleration of about 20% per decade after 2001.

156 citations

Journal ArticleDOI
TL;DR: In this paper, marine red macroalga (seaweed) Asparagopsis taxiformis was used as a feed ingredient to eliminate enteric methane in cattle fed a high grain diet and provide evidence of improved livestock production performance.

145 citations

Journal ArticleDOI
TL;DR: The extent and cost of scaling seaweed aquaculture to provide sufficient CO2eq sequestration for several climate change mitigation scenarios are assessed, with a focus on the food sector-a major source of greenhouse gases.

144 citations

Journal ArticleDOI
17 Mar 2021-PLOS ONE
TL;DR: In this article, the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), yield (g CH4/kg dry matter intake (DMI)), and intensity (g HC4/ kg ADG); average daily gain (ADG; kg gain/day), feed conversion efficiency (FCE; kg ADGs/kg DMI), and carcass and meat quality in growing beef steers were determined.
Abstract: The red macroalgae (seaweed) Asparagopsis spp. has shown to reduce ruminant enteric methane (CH4) production up to 99% in vitro. The objective of this study was to determine the effect of Asparagopsis taxiformis on CH4 production (g/day per animal), yield (g CH4/kg dry matter intake (DMI)), and intensity (g CH4/kg ADG); average daily gain (ADG; kg gain/day), feed conversion efficiency (FCE; kg ADG/kg DMI), and carcass and meat quality in growing beef steers. Twenty-one Angus-Hereford beef steers were randomly allocated to one of three treatment groups: 0% (Control), 0.25% (Low), and 0.5% (High) A. taxiformis inclusion based on organic matter intake. Steers were fed 3 diets: high, medium, and low forage total mixed ration (TMR) representing life-stage diets of growing beef steers. The Low and High treatments over 147 days reduced enteric CH4 yield 45 and 68%, respectively. However, there was an interaction between TMR type and the magnitude of CH4 yield reduction. Supplementing low forage TMR reduced CH4 yield 69.8% (P <0.01) for Low and 80% (P <0.01) for High treatments. Hydrogen (H2) yield (g H2/DMI) increased (P <0.01) 336 and 590% compared to Control for the Low and High treatments, respectively. Carbon dioxide (CO2) yield (g CO2/DMI) increased 13.7% between Control and High treatments (P = 0.03). No differences were found in ADG, carcass quality, strip loin proximate analysis and shear force, or consumer taste preferences. DMI tended to decrease 8% (P = 0.08) in the Low treatment and DMI decreased 14% (P <0.01) in the High treatment. Conversely, FCE tended to increase 7% in Low (P = 0.06) and increased 14% in High (P <0.01) treatment compared to Control. The persistent reduction of CH4 by A. taxiformis supplementation suggests that this is a viable feed additive to significantly decrease the carbon footprint of ruminant livestock and potentially increase production efficiency.

128 citations