scispace - formally typeset
Search or ask a question
Author

Joan Sola

Bio: Joan Sola is an academic researcher from University of Barcelona. The author has contributed to research in topics: Dark energy & Cosmological constant. The author has an hindex of 51, co-authored 237 publications receiving 9132 citations. Previous affiliations of Joan Sola include Universidade Federal de Juiz de Fora & Spanish National Research Council.


Papers
More filters
Journal ArticleDOI
Georg Weiglein1, Sami Lehti2, Geneviève Bélanger, Tao Han3, David L. Rainwater4, Massimiliano Chiorboli5, Michael Ratz, M. Schumacher6, P. Niezurawski7, Stefano Moretti8, Filip Moortgat9, S. J. Asztalos10, Rohini M. Godbole11, Abdelhak Djouadi12, G. Polesello9, Werner Porod13, Werner Porod14, A.A. Giolo-Nicollerat15, Alessia Tricomi5, J.L. Hewett16, M. Szleper17, L. Zivkovic18, Stephen Godfrey19, Maria Krawczyk7, Klaus Desch20, Alexander Sherstnev21, Dimitri Bourilkov22, A. G. Akeroyd, Dirk Zerwas, M. Muhlleitner23, T. Binoth24, Maria Spiropulu9, Alexander Nikitenko25, A. Krokhotine, V. Bunichev21, Tadas Krupovnickas26, Peter Wienemann, T. Hurth16, T. Hurth9, A. De Roeck9, S. De Curtis27, Ritva Kinnunen2, D. Grellscheid28, U. Baur29, J. Kalinowski7, Gudrid Moortgat-Pick9, Gudrid Moortgat-Pick1, H. U. Martyn30, Alexander Pukhov21, C. Hugonie14, U. Ellwanger, Daniel Tovey31, Aleksander Filip Zarnecki7, Thomas G. Rizzo16, S. Slabospitsky, Jonathan L. Feng32, Remi Lafaye33, Sally Dawson34, Diaz23, Philip Bechtle20, I.F. Ginzburg, Hooman Davoudiasl, Andreas Redelbach24, J. Jiang35, W. J. Stirling1, Reinhold Rückl24, Per Osland36, S. Weinzierl37, Fernando Quevedo38, Laura Reina26, Timothy Barklow16, H. J. Schreiber, Andre Sopczak39, Wilfried Buchmuller, Howard E. Haber40, H. Pas24, E. Lytken41, Xerxes Tata, Howard Baer26, Tsutomu T. Yanagida42, Sabine Kraml43, Sabine Kraml9, Mayda Velasco17, Francois Richard, E. K. U. Gross6, A.F. Osorio44, J. Guasch23, Fawzi Boudjema, Stewart Boogert45, Sven Heinemeyer9, Sabine Riemann, D. Asner18, Daniele Dominici27, Victoria Jane Martin46, J.F. Gunion47, Marco Battaglia48, Michael Spira23, Doreen Wackeroth29, David J. Miller46, David J. Miller49, Joan Sola50, J. Gronberg10, Zack Sullivan, A. Juste, Lynne H. Orr4, Wolfgang Hollik51, Heather E. Logan3, Benjamin C. Allanach38, Junji Hisano42, Carlos E. M. Wagner35, Carlos E. M. Wagner52, Frank F. Deppisch24, Tilman Plehn9, F. Gianotti9, Gianluca Cerminara53, G.A. Blair54, Wolfgang Kilian, Michael Dittmar15, E. E. Boos21, Kiyotomo Kawagoe55, Alexander Belyaev26, Koichi Hamaguchi, Børge Kile Gjelsten56, Tim M. P. Tait, Klaus Mönig, Edmond L. Berger35, P.M. Zerwas, Mihoko M. Nojiri57 
Durham University1, University of Helsinki2, University of Wisconsin-Madison3, University of Rochester4, University of Catania5, Weizmann Institute of Science6, University of Warsaw7, University of Southampton8, CERN9, Lawrence Livermore National Laboratory10, Indian Institute of Science11, University of Montpellier12, University of Zurich13, Spanish National Research Council14, ETH Zurich15, Stanford University16, Northwestern University17, University of Pittsburgh18, Carleton University19, University of Hamburg20, Moscow State University21, University of Florida22, Paul Scherrer Institute23, University of Würzburg24, Imperial College London25, Florida State University26, University of Florence27, University of Bonn28, University at Buffalo29, RWTH Aachen University30, University of Sheffield31, University of California, Irvine32, Laboratoire d'Annecy-le-Vieux de physique des particules33, Brookhaven National Laboratory34, Argonne National Laboratory35, University of Bergen36, University of Mainz37, Centers for Medicare and Medicaid Services38, Lancaster University39, University of California, Santa Cruz40, University of Copenhagen41, University of Tokyo42, Austrian Academy of Sciences43, University of Manchester44, University College London45, University of Edinburgh46, University of California, Davis47, University of California, Berkeley48, University of Glasgow49, University of Barcelona50, Max Planck Society51, University of Chicago52, University of Turin53, Royal Holloway, University of London54, Kobe University55, University of Oslo56, Kyoto University57
TL;DR: In this paper, the authors discuss the possible interplay between the Large Hadron Collider (LHC) and the International e(+)e(-) Linear Collider (ILC) in testing the Standard Model and in discovering and determining the origin of new physics.

422 citations

Journal ArticleDOI
Georg Weiglein, Timothy Barklow, E. E. Boos, A. De Roeck, Klaus Kurt Desch, F. Gianotti, Rohini M. Godbole, J.F. Gunion, Howard E. Haber, S. Heinemeyer, J.L. Hewett, Kiyotomo Kawagoe, Klaus Mönig, Mihoko M. Nojiri, G. Polesello, Francois Richard, Sabine Riemann, W. J. Stirling, A. G. Akeroyd, Benjamin C. Allanach, D. M. Asner, S. J. Asztalos, Howard Baer, M. Battaglia, U. Baur, Philip Bechtle, Geneviève Bélanger, Alexander Belyaev, Edmond L. Berger, T. Binoth, G.A. Blair, Stewart Boogert, Fawzi Boudjema, Dimitri Bourilkov, Wilfried Buchmuller, V. Bunichev, Gianluca Cerminara, Massimiliano Chiorboli, Hooman Davoudiasl, Sally Dawson, S. De Curtis, Frank F. Deppisch, Marco Aurelio Diaz, Michael Dittmar, Abdelhak Djouadi, Daniele Dominici, U. Ellwanger, Jonathan L. Feng, I.F. Ginzburg, A. S. Giolo-Nicollerat, Børge Kile Gjelsten, Stephen Godfrey, David Grellscheid, J. Gronberg, Eugene P. Gross, J. Guasch, Koichi Hamaguchi, Tao Han, Junji Hisano, Wolfgang Hollik, Cyril Hugonie, Tobias Hurth, J. Jiang, A. Juste, J. Kalinowski, Wolfgang Kilian, Ritva Kinnunen, Sabine Kraml, Maria Krawczyk, A. Krokhotine, T. Krupovnickas, Remi Lafaye, Sami Lehti, Heather E. Logan, Else Lytken, Victoria Jane Martin, H.U. Martyn, David J. Miller, Stefano Moretti, F. Moortgat, Gudrid Moortgat-Pick, M. Muhlleitner, P. Niezurawski, Alexander Nikitenko, Lynne H. Orr, Per Osland, A.F. Osorio, H. Pas, Tilman Plehn, Werner Porod, Alexander Pukhov, Fernando Quevedo, D. Rainwater, Michael Ratz, Andreas Redelbach, Laura Reina, Tom Rizzo, Reinhold Rückl, H. J. Schreiber, Markus Schumacher, Alexander Sherstnev, S. Slabospitsky, Joan Sola, Andre Sopczak, Michael Spira, Maria Spiropulu, Zack Sullivan, Michal Szleper, Tim M. P. Tait, Xerxes Tata, Daniel Tovey, Alessia Tricomi, Mayda Velasco, Doreen Wackeroth, Carlos E. M. Wagner, S. Weinzierl, Peter Wienemann, Tsutomu T. Yanagida, Aleksander Filip Zarnecki, Dirk Zerwas, P.M. Zerwas, L. Zivkovic 
TL;DR: In this article, the authors address the possible interplay between the Large Hadron Collider (LHC) and the International e+e- Linear Collider (ILC) in testing the Standard Model and in discovering and determining the origin of new physics.
Abstract: Physics at the Large Hadron Collider (LHC) and the International e+e- Linear Collider (ILC) will be complementary in many respects, as has been demonstrated at previous generations of hadron and lepton colliders. This report addresses the possible interplay between the LHC and ILC in testing the Standard Model and in discovering and determining the origin of new physics. Mutual benefits for the physics programme at both machines can occur both at the level of a combined interpretation of Hadron Collider and Linear Collider data and at the level of combined analyses of the data, where results obtained at one machine can directly influence the way analyses are carried out at the other machine. Topics under study comprise the physics of weak and strong electroweak symmetry breaking, supersymmetric models, new gauge theories, models with extra dimensions, and electroweak and QCD precision physics. The status of the work that has been carried out within the LHC / LC Study Group so far is summarised in this report. Possible topics for future studies are outlined.

334 citations

Journal ArticleDOI
06 Jun 2013
TL;DR: The cosmological constant (CC) problem as mentioned in this paper was first associated to the idea of vacuum energy density, and it is well known that there is a huge discrepancy between the theoretical prediction and the observed value picked from the modern cosmology data.
Abstract: The cosmological constant (CC) term in Einstein's equations, Λ, was first associated to the idea of vacuum energy density. Notwithstanding, it is well-known that there is a huge, in fact appalling, discrepancy between the theoretical prediction and the observed value picked from the modern cosmological data. This is the famous, and extremely difficult, "CC problem". Paradoxically, the recent observation at the CERN Large Hadron Collider of a Higgs-like particle, should actually be considered ambivalent: on the one hand it appears as a likely great triumph of particle physics, but on the other hand it wide opens Pandora's box of the cosmological uproar, for it may provide (alas!) the experimental certification of the existence of the electroweak (EW) vacuum energy, and thus of the intriguing reality of the CC problem. Even if only counting on this contribution to the inventory of vacuum energies in the universe, the discrepancy with the cosmologically observed value is already of 55 orders of magnitude. This is the (hitherto) "real" magnitude of the CC problem, rather than the (too often) brandished 123 ones from the upper (but fully unexplored!) ultrahigh energy scales. Such is the baffling situation after 96 years of introducing the Λ-term by Einstein. In the following I will briefly (and hopefully pedagogically) fly over some of the old and new ideas on the CC problem. Since, however, the Higgs boson just knocked our door and recalled us that the vacuum energy may be a fully tangible concept in real phenomenology, I will exclusively address the CC problem from the original notion of vacuum energy, and its possible "running" with the expansion of the universe, rather than venturing into the numberless attempts to replace the CC by the multifarious concept of dark energy.

309 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that in curved space-time, the cosmological constant Λ has a mild running behavior associated with quantum effects, which could be the very origin of the dynamical nature of the Dark Energy.

284 citations

Journal ArticleDOI
TL;DR: In this article, the particle contributions to the running of the cosmological and gravitational constants in the framework of the Standard Model in curved space-time are derived, in two different frameworks, whether the scaling dependences of these constants spoil primordial nucleosynthesis.
Abstract: In quantum field theory the parameters of the vacuum action are subject to renormalization group running. In particular, the ``cosmological constant'' is not a constant in a quantum field theory context, still less should be zero. In this paper we continue with previous work, and derive the particle contributions to the running of the cosmological and gravitational constants in the framework of the Standard Model in curved space-time. At higher energies the calculation is performed in a sharp cut off approximation. We assess, in two different frameworks, whether the scaling dependences of the cosmological and gravitational constants spoil primordial nucleosynthesis. Finally, the cosmological implications of the running of the cosmological constant are discussed.

274 citations


Cited by
More filters
Journal ArticleDOI
Claude Amsler1, Michael Doser2, Mario Antonelli, D. M. Asner3  +173 moreInstitutions (86)
TL;DR: This biennial Review summarizes much of particle physics, using data from previous editions.

12,798 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence and tachyon.
Abstract: We review in detail a number of approaches that have been adopted to try and explain the remarkable observation of our accelerating universe. In particular we discuss the arguments for and recent progress made towards understanding the nature of dark energy. We review the observational evidence for the current accelerated expansion of the universe and present a number of dark energy models in addition to the conventional cosmological constant, paying particular attention to scalar field models such as quintessence, K-essence, tachyon, phantom and dilatonic models. The importance of cosmological scaling solutions is emphasized when studying the dynamical system of scalar fields including coupled dark energy. We study the evolution of cosmological perturbations allowing us to confront them with the observation of the Cosmic Microwave Background and Large Scale Structure and demonstrate how it is possible in principle to reconstruct the equation of state of dark energy by also using Supernovae Ia observational data. We also discuss in detail the nature of tracking solutions in cosmology, particle physics and braneworld models of dark energy, the nature of possible future singularities, the effect of higher order curvature terms to avoid a Big Rip singularity, and approaches to modifying gravity which leads to a late-time accelerated expansion without recourse to a new form of dark energy.

5,954 citations

01 Jan 2016
TL;DR: The table of integrals series and products is universally compatible with any devices to read and is available in the book collection an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading table of integrals series and products. Maybe you have knowledge that, people have look hundreds times for their chosen books like this table of integrals series and products, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. table of integrals series and products is available in our book collection an online access to it is set as public so you can get it instantly. Our book servers saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the table of integrals series and products is universally compatible with any devices to read.

4,085 citations

Journal ArticleDOI
TL;DR: In this article, the structure and cosmological properties of a number of modified theories, including traditional F (R ) and Hořava-Lifshitz F ( R ) gravity, scalar-tensor theory, string-inspired and Gauss-Bonnet theory, non-local gravity, nonminimally coupled models, and power-counting renormalizable covariant gravity are discussed.

3,513 citations