scispace - formally typeset
Search or ask a question
Author

Joanna Said

Bio: Joanna Said is an academic researcher from University of Gothenburg. The author has contributed to research in topics: Virus & Heparan sulfate. The author has an hindex of 5, co-authored 9 publications receiving 93 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations, and establishes proof-of-concept for targeting the HS–Spike protein–ACE2 axis with synthetic HS mimetics.
Abstract: Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a coreceptor with the ACE2 protein for the S1 spike protein on SARS-CoV-2 virus, providing a tractable new therapeutic target. Clinically used heparins demonstrate an inhibitory activity but have an anticoagulant activity and are supply-limited, necessitating alternative solutions. Here, we show that synthetic HS mimetic pixatimod (PG545), a cancer drug candidate, binds and destabilizes the SARS-CoV-2 spike protein receptor binding domain and directly inhibits its binding to ACE2, consistent with molecular modeling identification of multiple molecular contacts and overlapping pixatimod and ACE2 binding sites. Assays with multiple clinical isolates of SARS-CoV-2 virus show that pixatimod potently inhibits the infection of monkey Vero E6 cells and physiologically relevant human bronchial epithelial cells at safe therapeutic concentrations. Pixatimod also retained broad potency against variants of concern (VOC) including B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Furthermore, in a K18-hACE2 mouse model, pixatimod significantly reduced SARS-CoV-2 viral titers in the upper respiratory tract and virus-induced weight loss. This demonstration of potent anti-SARS-CoV-2 activity tolerant to emerging mutations establishes proof-of-concept for targeting the HS–Spike protein–ACE2 axis with synthetic HS mimetics and provides a strong rationale for clinical investigation of pixatimod as a potential multimodal therapeutic for COVID-19.

40 citations

Posted ContentDOI
24 Jun 2020-bioRxiv
TL;DR: Assays with four different clinical isolates of live SARS-CoV-2 virus show that pixatimod potently inhibits infection of Vero cells at doses well within its safe therapeutic dose range, establishing that synthetic HS mimetics can target the HS-Spike protein-ACE2 axis.
Abstract: Summary Heparan sulfate (HS) is a cell surface polysaccharide recently identified as a co-receptor with the ACE2 protein for recognition of the S1 spike protein on SARS-CoV2 virus, revealing an attractive new target for therapeutic intervention. Clinically-used heparins demonstrate relevant inhibitory activity, but world supplies are limited, necessitating a synthetic solution. The HS mimetic pixatimod is synthetic drug candidate for cancer with immunomodulatory and heparanase-inhibiting properties. Here we show that pixatimod binds directly to the SARS-CoV-2 spike protein receptor binding domain (S1-RBD), altering its conformation and destabilizing its structure. Molecular modelling identified a binding site overlapping with the ACE2 receptor site. Consistent with this, pixatimod inhibits binding of S1-RBD to ACE2-expressing cells and displays a direct mechanism of action by inhibiting binding of S1-RBD to human ACE2. Assays with four different clinical isolates of live SARS-CoV-2 virus show that pixatimod potently inhibits infection of Vero cells at doses well within its safe therapeutic dose range. This demonstration of potent anti-SARS-CoV-2 activity establishes that synthetic HS mimetics can target the HS-Spike protein-ACE2 axis. Together with other known activities of pixatimod our data provides a strong rationale for its further investigation as a potential multimodal therapeutic to address the COVID-19 pandemic.

33 citations

Journal ArticleDOI
TL;DR: Considering the virucidal effect and low toxicity, these sulfated oligosaccharides with lipophilic tails may offer new possibilities of microbicide development.

31 citations

Journal ArticleDOI
TL;DR: PG545 offers a novel prophylaxis option against infections caused by GAG-binding viruses, as this compound, in contrast to unmodified sulfated oligosaccharide, protected mice against genital infection with HSV-2.
Abstract: Herpes simplex virus (HSV) and many other viruses, including HIV, initiate infection of host cells by binding to glycosaminoglycan (GAG) chains of cell surface proteoglycans. Although GAG mimetics, such as sulfated oligo- and polysaccharides, exhibit potent antiviral activities in cultured cells, the prophylactic application of these inhibitors as vaginal microbicides failed to protect women upon their exposure to HIV. A possible explanation for this failure is that sulfated oligo- and polysaccharides exhibit no typical virucidal activity, as their interaction with viral particles is largely electrostatic and reversible and thereby vulnerable to competition with GAG-binding proteins of the genital tract. Here we report that the cholestanol-conjugated sulfated oligosaccharide PG545, but not several other sulfated oligosaccharides lacking this modification, exhibited virucidal activity manifested as disruption of the lipid envelope of HSV-2 particles. The significance of the virus particle-disrupting activity of PG545 was also demonstrated in experimental animals, as this compound, in contrast to unmodified sulfated oligosaccharide, protected mice against genital infection with HSV-2. Thus, PG545 offers a novel prophylaxis option against infections caused by GAG-binding viruses.

26 citations

Journal ArticleDOI
TL;DR: The results extend the understanding of the biological impact of reduced ITPase activity, demonstrate that RTP is a substrate of ITP enzyme, and may point to personalized ribavirin dosage according to ITPA genotype in addition to novel antiviral strategies.
Abstract: A third of humans carry genetic variants of the ITP pyrophosphatase (ITPase) gene (ITPA) that lead to reduced enzyme activity Reduced ITPase activity was earlier reported to protect against ribavi

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Past and current methods for targeting these complex biomolecules as a novel therapeutic strategy to treating disorders such as cancer, neurodegenerative diseases, and infection are discussed.
Abstract: Heparin and heparan sulfate glycosaminoglycans are long, linear polysaccharides that are made up of alternating dissacharide sequences of sulfated uronic acid and amino sugars. Unlike heparin, which is only found in mast cells, heparan sulfate is ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These negatively-charged glycans play essential roles in important cellular functions such as cell growth, adhesion, angiogenesis, and blood coagulation. These biomolecules are also involved in pathophysiological conditions such as pathogen infection and human disease. This review discusses past and current methods for targeting these complex biomolecules as a novel therapeutic strategy to treating disorders such as cancer, neurodegenerative diseases, and infection.

104 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used an extensive heparan sulfate (HS) oligosaccharide library and showed that the receptor binding domain (RBD) of the spike of SARS-CoV-2 can bind HS in a length and sequence-dependent manner.
Abstract: Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing an unprecedented global pandemic demanding the urgent development of therapeutic strategies. Microarray binding experiments, using an extensive heparan sulfate (HS) oligosaccharide library, showed that the receptor binding domain (RBD) of the spike of SARS-CoV-2 can bind HS in a length- and sequence-dependent manner. A hexasaccharide composed of IdoA2S-GlcNS6S repeating units was identified as the minimal binding epitope. Surface plasmon resonance showed the SARS-CoV-2 spike protein binds with a much higher affinity to heparin (K-D = 55 nM) compared to the RBD (KD = 1 mu M) alone. It was also found that heparin does not interfere in angiotensin-converting enzyme 2 (ACE2) binding or proteolytic processing of the spike. However, exogenous administered heparin or a highly sulfated HS oligosaccharide inhibited RBD binding to cells. Furthermore, an enzymatic removal of HS proteoglycan from physiological relevant tissue resulted in a loss of RBD binding. The data support a model in which HS functions as the point of initial attachment allowing the virus to travel through the glycocalyx by low-affinity high-avidity interactions to reach the cell membrane, where it can engage with ACE2 for cell entry. Microarray binding experiments showed that ACE2 and HS can simultaneously engage with the RBD, and it is likely no dissociation between HS and RBD is required for binding to ACE2. The results highlight the potential of using HS oligosaccharides as a starting material for therapeutic agent development.

82 citations

Journal ArticleDOI
TL;DR: A systematic comparison of the potential antiviral effect of various heparin preparations on live wild type SARS‐CoV‐2, in vitro, is needed.
Abstract: Background and purpose Currently, there are no licensed vaccines and limited antivirals for the treatment of COVID-19. Heparin (delivered systemically) is currently used to treat anticoagulant anomalies in COVID-19 patients. Additionally, in the United Kingdom, Brazil and Australia, nebulised unfractionated heparin (UFH) is being trialled in COVID-19 patients as a potential treatment. A systematic comparison of the potential antiviral effect of various heparin preparations on live wild type SARS-CoV-2, in vitro, is needed. Experimental approach Seven different heparin preparations including UFH and low MW heparins (LMWH) of porcine or bovine origin were screened for antiviral activity against live SARS-CoV-2 (Australia/VIC01/2020) using a plaque inhibition assay with Vero E6 cells. Interaction of heparin with spike protein RBD was studied using differential scanning fluorimetry and the inhibition of RBD binding to human ACE2 protein using elisa assays was examined. Key results All the UFH preparations had potent antiviral effects, with IC50 values ranging between 25 and 41 μg·ml-1 , whereas LMWHs were less inhibitory by ~150-fold (IC50 range 3.4-7.8 mg·ml-1 ). Mechanistically, we observed that heparin binds and destabilizes the RBD protein and furthermore, we show heparin directly inhibits the binding of RBD to the human ACE2 protein receptor. Conclusion and implications This comparison of clinically relevant heparins shows that UFH has significantly stronger SARS-CoV-2 antiviral activity compared to LMWHs. UFH acts to directly inhibit binding of spike protein to the human ACE2 protein receptor. Overall, the data strongly support further clinical investigation of UFH as a potential treatment for patients with COVID-19.

72 citations

Journal ArticleDOI
TL;DR: The results support the feasibility of inhibiting HSV infection by direct interaction of polysaccharides with viral particles, and their chemically sulfated derivatives against herpes simplex virus type 1 (HSV-1).

68 citations

Journal ArticleDOI
TL;DR: The results suggest the feasibility of inhibiting HSV attachment to cells by direct interaction of polysaccharides with viral particles as well as sulfate groups enhanced the macromolecules capability to inhibit the infection of cells by HSV-1.

66 citations