scispace - formally typeset
Search or ask a question
Author

Joanne B. Emerson

Bio: Joanne B. Emerson is an academic researcher from University of California, Davis. The author has contributed to research in topics: Metagenomics & Biology. The author has an hindex of 26, co-authored 55 publications receiving 4088 citations. Previous affiliations of Joanne B. Emerson include J. Craig Venter Institute & Cooperative Institute for Research in Environmental Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: Comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose.
Abstract: The complex microbiome of the rumen functions as an effective system for the conversion of plant cell wall biomass to microbial protein, short chain fatty acids, and gases. As such, it provides a unique genetic resource for plant cell wall degrading microbial enzymes that could be used in the production of biofuels. The rumen and gastrointestinal tract harbor a dense and complex microbiome. To gain a greater understanding of the ecology and metabolic potential of this microbiome, we used comparative metagenomics (phylotype analysis and SEED subsystems-based annotations) to examine randomly sampled pyrosequence data from 3 fiber-adherent microbiomes and 1 pooled liquid sample (a mixture of the liquid microbiome fractions from the same bovine rumens). Even though the 3 animals were fed the same diet, the community structure, predicted phylotype, and metabolic potentials in the rumen were markedly different with respect to nutrient utilization. A comparison of the glycoside hydrolase and cellulosome functional genes revealed that in the rumen microbiome, initial colonization of fiber appears to be by organisms possessing enzymes that attack the easily available side chains of complex plant polysaccharides and not the more recalcitrant main chains, especially cellulose. Furthermore, when compared with the termite hindgut microbiome, there are fundamental differences in the glycoside hydrolase content that appear to be diet driven for either the bovine rumen (forages and legumes) or the termite hindgut (wood).

623 citations

Journal ArticleDOI
TL;DR: This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing the understanding of bacterial ecology in human health.
Abstract: The composition of the oral microbiota from 10 individuals with healthy oral tissues was determined using culture-independent techniques. From each individual, 26 specimens, each from different oral sites at a single point in time, were collected and pooled. An 11th pool was constructed using portions of the subgingival specimens from all 10 individuals. The 16S ribosomal RNA gene was amplified using broad-range bacterial primers, and clone libraries from the individual and subgingival pools were constructed. From a total of 11 368 high-quality, nonchimeric, near full-length sequences, 247 species-level phylotypes (using a 99% sequence identity threshold) and 9 bacterial phyla were identified. At least 15 bacterial genera were conserved among all 10 individuals, with significant interindividual differences at the species and strain level. Comparisons of these oral bacterial sequences with near full-length sequences found previously in the large intestines and feces of other healthy individuals suggest that the mouth and intestinal tract harbor distinct sets of bacteria. Co-occurrence analysis showed significant segregation of taxa when community membership was examined at the level of genus, but not at the level of species, suggesting that ecologically significant, competitive interactions are more apparent at a broader taxonomic level than species. This study is one of the more comprehensive, high-resolution analyses of bacterial diversity within the healthy human mouth to date, and highlights the value of tools from macroecology for enhancing our understanding of bacterial ecology in human health.

549 citations

Journal ArticleDOI
TL;DR: A comprehensive analysis of airborne microbes across two aerosol size fractions at urban and rural sites in the Colorado Front Range over a 14-month period suggests that a complex set of environmental factors act to control the composition of microbial bioaerosols in rural and urban environments.
Abstract: Bacteria and fungi are ubiquitous throughout the Earth's lower atmosphere where they often represent an important component of atmospheric aerosols with the potential to impact human health and atmospheric dynamics. However, the diversity, composition, and spatiotemporal dynamics of these airborne microbes remain poorly understood. We performed a comprehensive analysis of airborne microbes across two aerosol size fractions at urban and rural sites in the Colorado Front Range over a 14-month period. Coarse (PM10-2.5) and fine (PM2.5) particulate matter samples were collected at weekly intervals with both bacterial and fungal diversity assessed via high-throughput sequencing. The diversity and composition of the airborne communities varied across the sites, between the two size fractions, and over time. Bacteria were the dominant type of bioaerosol in the collected air samples, while fungi and plants (pollen) made up the remainder, with the relative abundances of fungi peaking during the spring and summer months. As bacteria made up the majority of bioaerosol particles, we analyzed the bacterial communities in greater detail using a bacterial-specific 16S rRNA gene sequencing approach. Overall, bacterial taxonomic richness and the relative abundances of specific bacterial taxa exhibited significant patterns of seasonality. Likewise, airborne bacterial communities varied significantly between sites and across aerosol size fractions. Source-tracking analyses indicate that soils and leaves represented important sources of bacteria to the near-surface atmosphere across all locations with cow fecal bacteria also representing an important source of bioaerosols at the more rural sites during early fall and early spring. Together, these data suggest that a complex set of environmental factors, including changes in atmospheric conditions and shifts in the relative importance of available microbial sources, act to control the composition of microbial bioaerosols in rural and urban environments.

331 citations

Journal ArticleDOI
TL;DR: The MIUViG (Minimum Information about an Uncultivated Virus Genome) as mentioned in this paper standard was developed within the Genomic Standards Consortium framework and includes virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction.
Abstract: We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.

318 citations

Journal ArticleDOI
TL;DR: The recovery of viral populations from peatland soils across a permafrost thaw gradient provides insights into soil viral diversity, their hosts and the potential impacts on carbon cycling in this environment, and suggests that viruses may impact ecosystem function in climate-critical, terrestrial habitats.
Abstract: Climate change threatens to release abundant carbon that is sequestered at high latitudes, but the constraints on microbial metabolisms that mediate the release of methane and carbon dioxide are poorly understood1,2,3,4,5,6,7. The role of viruses, which are known to affect microbial dynamics, metabolism and biogeochemistry in the oceans8,9,10, remains largely unexplored in soil. Here, we aimed to investigate how viruses influence microbial ecology and carbon metabolism in peatland soils along a permafrost thaw gradient in Sweden. We recovered 1,907 viral populations (genomes and large genome fragments) from 197 bulk soil and size-fractionated metagenomes, 58% of which were detected in metatranscriptomes and presumed to be active. In silico predictions linked 35% of the viruses to microbial host populations, highlighting likely viral predators of key carbon-cycling microorganisms, including methanogens and methanotrophs. Lineage-specific virus/host ratios varied, suggesting that viral infection dynamics may differentially impact microbial responses to a changing climate. Virus-encoded glycoside hydrolases, including an endomannanase with confirmed functional activity, indicated that viruses influence complex carbon degradation and that viral abundances were significant predictors of methane dynamics. These findings suggest that viruses may impact ecosystem function in climate-critical, terrestrial habitats and identify multiple potential viral contributions to soil carbon cycling.

311 citations


Cited by
More filters
Journal ArticleDOI
23 Mar 2007-Science
TL;DR: It is found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences, and CRISPR provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.

5,045 citations

Journal Article
TL;DR: FastTree as mentioned in this paper uses sequence profiles of internal nodes in the tree to implement neighbor-joining and uses heuristics to quickly identify candidate joins, then uses nearest-neighbor interchanges to reduce the length of the tree.
Abstract: Gene families are growing rapidly, but standard methods for inferring phylogenies do not scale to alignments with over 10,000 sequences. We present FastTree, a method for constructing large phylogenies and for estimating their reliability. Instead of storing a distance matrix, FastTree stores sequence profiles of internal nodes in the tree. FastTree uses these profiles to implement neighbor-joining and uses heuristics to quickly identify candidate joins. FastTree then uses nearest-neighbor interchanges to reduce the length of the tree. For an alignment with N sequences, L sites, and a different characters, a distance matrix requires O(N^2) space and O(N^2 L) time, but FastTree requires just O( NLa + N sqrt(N) ) memory and O( N sqrt(N) log(N) L a ) time. To estimate the tree's reliability, FastTree uses local bootstrapping, which gives another 100-fold speedup over a distance matrix. For example, FastTree computed a tree and support values for 158,022 distinct 16S ribosomal RNAs in 17 hours and 2.4 gigabytes of memory. Just computing pairwise Jukes-Cantor distances and storing them, without inferring a tree or bootstrapping, would require 17 hours and 50 gigabytes of memory. In simulations, FastTree was slightly more accurate than neighbor joining, BIONJ, or FastME; on genuine alignments, FastTree's topologies had higher likelihoods. FastTree is available at http://microbesonline.org/fasttree.

2,436 citations

Journal ArticleDOI
TL;DR: An enhanced understanding of the skin microbiome is necessary to gain insight into microbial involvement in human skin disorders and to enable novel promicrobial and antimicrobial therapeutic approaches for their treatment.
Abstract: The skin is the human body's largest organ, colonized by a diverse milieu of microorganisms, most of which are harmless or even beneficial to their host. Colonization is driven by the ecology of the skin surface, which is highly variable depending on topographical location, endogenous host factors and exogenous environmental factors. The cutaneous innate and adaptive immune responses can modulate the skin microbiota, but the microbiota also functions in educating the immune system. The development of molecular methods to identify microorganisms has led to an emerging view of the resident skin bacteria as highly diverse and variable. An enhanced understanding of the skin microbiome is necessary to gain insight into microbial involvement in human skin disorders and to enable novel promicrobial and antimicrobial therapeutic approaches for their treatment.

2,279 citations

Journal ArticleDOI
14 Jul 2013-Nature
TL;DR: This study applies single-cell genomics to target and sequence 201 archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life and provides a systematic step towards a better understanding of biological evolution on the authors' planet.
Abstract: Genome sequencing enhances our understanding of the biological world by providing blueprints for the evolutionary and functional diversity that shapes the biosphere. However, microbial genomes that are currently available are of limited phylogenetic breadth, owing to our historical inability to cultivate most microorganisms in the laboratory. We apply single-cell genomics to target and sequence 201 uncultivated archaeal and bacterial cells from nine diverse habitats belonging to 29 major mostly uncharted branches of the tree of life, so-called 'microbial dark matter'. With this additional genomic information, we are able to resolve many intra- and inter-phylum-level relationships and to propose two new superphyla. We uncover unexpected metabolic features that extend our understanding of biology and challenge established boundaries between the three domains of life. These include a novel amino acid use for the opal stop codon, an archaeal-type purine synthesis in Bacteria and complete sigma factors in Archaea similar to those in Bacteria. The single-cell genomes also served to phylogenetically anchor up to 20% of metagenomic reads in some habitats, facilitating organism-level interpretation of ecosystem function. This study greatly expands the genomic representation of the tree of life and provides a systematic step towards a better understanding of biological evolution on our planet.

1,856 citations