scispace - formally typeset
Search or ask a question
Author

Joanne E. Martin

Bio: Joanne E. Martin is an academic researcher from Queen Mary University of London. The author has contributed to research in topics: Amyotrophic lateral sclerosis & Myopathy. The author has an hindex of 39, co-authored 130 publications receiving 8428 citations. Previous affiliations of Joanne E. Martin include Royal London Hospital & University of Oxford.


Papers
More filters
Journal ArticleDOI
TL;DR: The overlapping delay before symptom onset in humans and mice raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2, and generates mice lacking Mecp2 using Cre-loxP technology.
Abstract: Rett syndrome (RTT) is an inherited neurodevelopmental disorder of females that occurs once in 10,000-15,000 births. Affected females develop normally for 6-18 months, but then lose voluntary movements, including speech and hand skills. Most RTT patients are heterozygous for mutations in the X-linked gene MECP2 (refs. 3-12), encoding a protein that binds to methylated sites in genomic DNA and facilitates gene silencing. Previous work with Mecp2-null embryonic stem cells indicated that MeCP2 is essential for mouse embryogenesis. Here we generate mice lacking Mecp2 using Cre-loxP technology. Both Mecp2-null mice and mice in which Mecp2 was deleted in brain showed severe neurological symptoms at approximately six weeks of age. Compensation for absence of MeCP2 in other tissues by MeCP1 (refs. 19,20) was not apparent in genetic or biochemical tests. After several months, heterozygous female mice also showed behavioral symptoms. The overlapping delay before symptom onset in humans and mice, despite their profoundly different rates of development, raises the possibility that stability of brain function, not brain development per se, is compromised by the absence of MeCP2.

1,480 citations

Journal ArticleDOI
TL;DR: The SHIRPA procedure is developed, which utilizes standardized protocols for behavioral and functional assessment that provide a sensitive measure for quantifying phenotype expression in the mouse, and can be refined to test the function of specific neural pathways, which will contribute to a greater understanding of neurological disorders.
Abstract: For an understanding of the aberrant biology seen in mouse mutations and identification of more subtle phenotype variation, there is a need for a full clinical and pathological characterization of the animals. Although there has been some use of sophisticated techniques, the majority of behavioral and functional analyses in mice have been qualitative rather than quantitative in nature. There is, however, no comprehensive routine screening and testing protocol designed to identify and characterize phenotype variation or disorders associated with the mouse genome. We have developed the SHIRPA procedure to characterize the phenotype of mice in three stages. The primary screen utilizes standard methods to provide a behavioral and functional profile by observational assessment. The secondary screen involves a comprehensive behavioral assessment battery and pathological analysis. These protocols provide the framework for a general phenotype assessment that is suitable for a wide range of applications, including the characterization of spontaneous and induced mutants, the analysis of transgenic and gene-targeted phenotypes, and the definition of variation between strains. The tertiary screening stage described is tailored to the assessment of existing or potential models of neurological disease, as well as the assessment of phenotypic variability that may be the result of unknown genetic influences. SHIRPA utilizes standardized protocols for behavioral and functional assessment that provide a sensitive measure for quantifying phenotype expression in the mouse. These paradigms can be refined to test the function of specific neural pathways, which will, in turn, contribute to a greater understanding of neurological disorders.

795 citations

Journal ArticleDOI
02 May 2003-Science
TL;DR: It is shown that missense point mutations in the cytoplasmic dynein heavy chain result in progressive motor neuron degeneration in heterozygous mice, and in homozygotes this is accompanied by the formation of Lewy-like inclusion bodies, thus resembling key features of human pathology.
Abstract: Degenerative disorders of motor neurons include a range of progressive fatal diseases such as amyotrophic lateral sclerosis (ALS), spinal-bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Although the causative genetic alterations are known for some cases, the molecular basis of many SMA and SBMA-like syndromes and most ALS cases is unknown. Here we show that missense point mutations in the cytoplasmic dynein heavy chain result in progressive motor neuron degeneration in heterozygous mice, and in homozygotes this is accompanied by the formation of Lewy-like inclusion bodies, thus resembling key features of human pathology. These mutations exclusively perturb neuron-specific functions of dynein.

695 citations

Journal ArticleDOI
TL;DR: A genome-wide, phenotype-driven screen for dominant mutations in the mouse is undertaken, which has led to a substantial increase in themouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.
Abstract: As the human genome project approaches completion, the challenge for mammalian geneticists is to develop approaches for the systematic determination of mammalian gene function. Mouse mutagenesis will be a key element of studies of gene function. Phenotype-driven approaches using the chemical mutagen ethylnitrosourea (ENU) represent a potentially efficient route for the generation of large numbers of mutant mice that can be screened for novel phenotypes. The advantage of this approach is that, in assessing gene function, no a priori assumptions are made about the genes involved in any pathway. Phenotype-driven mutagenesis is thus an effective method for the identification of novel genes and pathways. We have undertaken a genome-wide, phenotype-driven screen for dominant mutations in the mouse. We generated and screened over 26,000 mice, and recovered some 500 new mouse mutants. Our work, along with the programme reported in the accompanying paper, has led to a substantial increase in the mouse mutant resource and represents a first step towards systematic studies of gene function in mammalian genetics.

662 citations

Journal ArticleDOI
01 Apr 1991-Brain
TL;DR: It is concluded that the presence of ubiquitin-IR inclusions in lower motor neurons represents a characteristic pathological feature of ALS in its various clinical forms.
Abstract: Antibodies to ubiquitin have been used to search for evidence of abnormal protein degradation in amyotrophic lateral sclerosis—motor neuron disease (ALS). Anterior horn cell ubiquitin-immunoreactive (IR) inclusions were present in all of 31 ALS cases but in none of 23 neurologically normal and in only 1 of 22 neurologically abnormal controls. These inclusions, which were present in familial and sporadic ALS cases, and in cases with dementia, took the form of dense rounded or irregular ubiquitin-IR cytoplasmic inclusions (dense bodies), or loosely arranged bundles (‘skeins’) of filamentous-appearing material. The presence of ubiquitin-IR inclusions corresponded to the pattern of selective neuronal vulnerability in ALS, although inclusions in pyramidal neurons of the motor cortex were infrequent and were noted in only a minority of cases. Ubiquitin-IR inclusions were more prevalent than Bunina Bodies. The latter were present in 67% of ALS cases but were seldom labelled by antibodies to ubiquitin. Intranuronal inclusions resembling Lewy bodies were present in 23% of ALS cases and were often identified by antibodies to ubiquitin. We conclude that the presence of ubiquitin-IR inclusions in lower motor neurons represents a characteristic pathological feature of ALS in its various clinical forms. Ubiquitin-IR inclusions in ALS differ from ubiquitinated inclusions in other neuronal degenerations in that they are not readily identified by antibodies to cytoskeletal proteins. They may represent accumulations of altered or abnormal neuronal proteins resistant to degradation via the ubiquitin proteolytic pathway.

344 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study traces the course of the pathology in incidental and symptomatic Parkinson cases proposing a staging procedure based upon the readily recognizable topographical extent of the lesions.

8,452 citations

Journal ArticleDOI
TL;DR: The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development.
Abstract: The character of a cell is defined by its constituent proteins, which are the result of specific patterns of gene expression. Crucial determinants of gene expression patterns are DNA-binding transcription factors that choose genes for transcriptional activation or repression by recognizing the sequence of DNA bases in their promoter regions. Interaction of these factors with their cognate sequences triggers a chain of events, often involving changes in the structure of chromatin, that leads to the assembly of an active transcription complex (e.g., Cosma et al. 1999). But the types of transcription factors present in a cell are not alone sufficient to define its spectrum of gene activity, as the transcriptional potential of a genome can become restricted in a stable manner during development. The constraints imposed by developmental history probably account for the very low efficiency of cloning animals from the nuclei of differentiated cells (Rideout et al. 2001; Wakayama and Yanagimachi 2001). A “transcription factors only” model would predict that the gene expression pattern of a differentiated nucleus would be completely reversible upon exposure to a new spectrum of factors. Although many aspects of expression can be reprogrammed in this way (Gurdon 1999), some marks of differentiation are evidently so stable that immersion in an alien cytoplasm cannot erase the memory. The genomic sequence of a differentiated cell is thought to be identical in most cases to that of the zygote from which it is descended (mammalian B and T cells being an obvious exception). This means that the marks of developmental history are unlikely to be caused by widespread somatic mutation. Processes less irrevocable than mutation fall under the umbrella term “epigenetic” mechanisms. A current definition of epigenetics is: “The study of mitotically and/or meiotically heritable changes in gene function that cannot be explained by changes in DNA sequence” (Russo et al. 1996). There are two epigenetic systems that affect animal development and fulfill the criterion of heritability: DNA methylation and the Polycomb-trithorax group (Pc-G/trx) protein complexes. (Histone modification has some attributes of an epigenetic process, but the issue of heritability has yet to be resolved.) This review concerns DNA methylation, focusing on the generation, inheritance, and biological significance of genomic methylation patterns in the development of mammals. Data will be discussed favoring the notion that DNA methylation may only affect genes that are already silenced by other mechanisms in the embryo. Embryonic transcription, on the other hand, may cause the exclusion of the DNA methylation machinery. The heritability of methylation states and the secondary nature of the decision to invite or exclude methylation support the idea that DNA methylation is adapted for a specific cellular memory function in development. Indeed, the possibility will be discussed that DNA methylation and Pc-G/trx may represent alternative systems of epigenetic memory that have been interchanged over evolutionary time. Animal DNA methylation has been the subject of several recent reviews (Bird and Wolffe 1999; Bestor 2000; Hsieh 2000; Costello and Plass 2001; Jones and Takai 2001). For recent reviews of plant and fungal DNA methylation, see Finnegan et al. (2000), Martienssen and Colot (2001), and Matzke et al. (2001).

6,691 citations

Journal ArticleDOI
TL;DR: Advances in the understanding of the mechanism and role of DNA methylation in biological processes are reviewed, showing that epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression.
Abstract: Cells of a multicellular organism are genetically homogeneous but structurally and functionally heterogeneous owing to the differential expression of genes. Many of these differences in gene expression arise during development and are subsequently retained through mitosis. Stable alterations of this kind are said to be 'epigenetic', because they are heritable in the short term but do not involve mutations of the DNA itself. Research over the past few years has focused on two molecular mechanisms that mediate epigenetic phenomena: DNA methylation and histone modifications. Here, we review advances in the understanding of the mechanism and role of DNA methylation in biological processes. Epigenetic effects by means of DNA methylation have an important role in development but can also arise stochastically as animals age. Identification of proteins that mediate these effects has provided insight into this complex process and diseases that occur when it is perturbed. External influences on epigenetic processes are seen in the effects of diet on long-term diseases such as cancer. Thus, epigenetic mechanisms seem to allow an organism to respond to the environment through changes in gene expression. The extent to which environmental effects can provoke epigenetic responses represents an exciting area of future research.

5,760 citations

Journal ArticleDOI
21 Mar 2008-Science
TL;DR: The evidence suggests a pathophysiological link between TDP-43 and ALS, and neighboring mutations in a highly conserved region of TARDBP in sporadic and familial ALS cases.
Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder characterized pathologically by ubiquitinated TAR DNA binding protein (TDP-43) inclusions. The function of TDP-43 in the nervous system is uncertain, and a mechanistic role in neurodegeneration remains speculative. We identified neighboring mutations in a highly conserved region of TARDBP in sporadic and familial ALS cases. TARDBPM337V segregated with disease within one kindred and a genome-wide scan confirmed that linkage was restricted to chromosome 1p36, which contains the TARDBP locus. Mutant forms of TDP-43 fragmented in vitro more readily than wild type and, in vivo, caused neural apoptosis and developmental delay in the chick embryo. Our evidence suggests a pathophysiological link between TDP-43 and ALS.

2,425 citations

Journal ArticleDOI
TL;DR: The role of DNA methylation in controlling gene expression is illuminated and its links with histone modification and chromatin remodelling are strengthened, and the mechanisms by which it is targeted to specific regions of the genome are understood.

2,418 citations