scispace - formally typeset
Search or ask a question
Author

João Alexandrino

Bio: João Alexandrino is an academic researcher from Federal University of São Paulo. The author has contributed to research in topics: Population & Range (biology). The author has an hindex of 17, co-authored 30 publications receiving 1265 citations. Previous affiliations of João Alexandrino include University of California, Berkeley & University of Porto.

Papers
More filters
Journal ArticleDOI
TL;DR: The data refute the recently proposed hypothesis of a southern Holocene colonization of the Atlantic Forest from northern refugia, suggesting instead persistence of forested habitats in the south.

214 citations

Journal ArticleDOI
TL;DR: If the predictive map is interpreted as depicting invasiveness potential of L. catesbeianus, strategies to prevent further invasion in Brazil should be focused especially in the Atlantic Rainforest biodiversity hotspot.
Abstract: The non-native invasive anuran Lithobates catesbeianus is presently distributed in Brazil, especially in the Atlantic Rainforest biodiversity hotspot. Here, we use a maximum entropy ecological niche modeling algorithm (i) to model the North American native geographic distribution of this species and (ii) to project that model onto the whole of Brazil. After applying a threshold value that balances commission and omission errors, the projection results suggested high probabilities of occurrence mostly in southern and southeastern Brazil. We also present the first report on the species known distribution in Brazil, showing good agreement with model predictions. If the predictive map is interpreted as depicting invasiveness potential of L. catesbeianus, strategies to prevent further invasion in Brazil should be focused especially in the Atlantic Rainforest biodiversity hotspot.

178 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined species distribution models for a Neotropical anuran restricted to ombrophilous areas in the Brazilian Atlantic Forest hotspot, using GPS field surveys and selected bioclimatic and topographic variables to model the species distribution.

147 citations

Journal ArticleDOI
TL;DR: The golden‐striped salamander (Chioglossa lusitanica) is an ecologically specialized species, endemic to north‐western Iberia, which is consistent with the following hypotheses: subdivision of an ancestral range of the species prior to the middle Pleistocene, secondary contact between populations representing historical refugia, and loss of genetic variation through founder effects during range expansion across major rivers.
Abstract: The golden-striped salamander (Chioglossa lusitanica) is an ecologically specialized species, endemic to north-western Iberia. Patterns of genetic variation were assessed at seven polymorphic enzyme loci and one mitochondrial DNA (mtDNA) marker (cytochrome b) in 17 populations across its range. Estimates of enzyme genetic diversity revealed a high degree of genetic subdivision (FST = 0.68), mainly attributable to the existence of two groups of populations. The groups were located, respectively, north and south of the Mondego River, indicating that this river coincided with a major historical barrier to gene flow. A significant decrease in genetic variability from the Mondego northwards was associated with the Douro and Minho rivers. mtDNA sequence variation revealed a congruent pattern of two haplotype groups (d = 2.2%), with a geographical distribution resembling that of allozymes. The pattern and depth of genetic variation is consistent with the following hypotheses: (i) subdivision of an ancestral range of the species prior to the middle Pleistocene; (ii) secondary contact between populations representing historical refugia; (iii) relatively recent range expansion giving rise to the northern part of the species range; and (iv) loss of genetic variation through founder effects during range expansion across major rivers.

116 citations

Journal ArticleDOI
01 Jan 2002-Heredity
TL;DR: A range expansion to the north from a southern refuge was supported by descriptive interpretations of mtDNA data and by complementary analyses suggesting population expansions, but not by formal nested clade analysis.
Abstract: The golden-striped salamander, Chioglossa lusitanica, is a streamside species distributed in the northwest of the Iberian Peninsula We gathered cytochrome b mitochondrial DNA sequence data from samples across the species range and used nested clade distance analysis to assess evolutionary processes explaining the geographical distribution of mtDNA diversity in Chioglossa lusitanica A significant association was observed between genetic structure and geography The geographical patterns were explained by past fragmentation and restricted gene flow Inferences were concordant with previous hypotheses (from allozyme data) involving an old fragmentation event and secondary contact near the Mondego River in central Portugal A range expansion to the north from a southern refuge was supported by descriptive interpretations of mtDNA data and by complementary analyses suggesting population expansions, but not by formal nested clade analysis The power of nested clade analysis to detect the genetic signature of range expansion deserves further testing

79 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI

6,278 citations

Journal ArticleDOI
TL;DR: DNA evidence indicates temperate species in Europe had different patterns of postglacial colonization across the same area and different ones in previous oscillations, whereas the northwest region of North America was colonized from the north, east and south.
Abstract: An appreciation of the scale and frequency of climatic oscillations in the past few million years is modifying our views on how evolution proceeds. Such major events caused extinction and repeated changes in the ranges of those taxa that survived. Their spatial effects depend on latitude and topography, with extensive extinction and recolonization in higher latitudes and altitudinal shifts and complex refugia nearer the tropics. The associated population dynamics varied with life history and geography, and the present genetic constitution of the populations and species carry attenuated signals of these past dynamics. Phylogeographic studies with DNA have burgeoned recently and studies are reviewed from the arctic, temperate and tropical regions, seeking commonalities of cause in the resulting genetic patterns. Arctic species show distinct shallow genetic clades with common geographical boundaries. Thus Beringia is distinct phylogeographically, but its role as a refugial source is complex. Arctic taxa do not show the common genetic pattern of southern richness and northern purity in north-temperate species. Temperate refugial regions in Europe and North America show relatively deep DNA divergence for many taxa, indicating their presence over several Ice Ages, and suggesting a mode of speciation by repeated allopatry. DNA evidence indicates temperate species in Europe had different patterns of postglacial colonization across the same area and different ones in previous oscillations, whereas the northwest region of North America was colonized from the north, east and south. Tropical montane regions contain deeply diverged lineages, often in a relatively small geographical area, suggesting their survival there from the Pliocene. Our poor understanding of refugial biodiversity would benefit from further combined fossil and genetic studies.

3,048 citations

Journal ArticleDOI
TL;DR: A detailed explanation of how MaxEnt works and a prospectus on modeling options are provided to enable users to make informed decisions when preparing data, choosing settings and interpreting output to highlight the need for making biologically motivated modeling decisions.
Abstract: The MaxEnt software package is one of the most popular tools for species distribution and environmental niche modeling, with over 1000 published applications since 2006. Its popularity is likely for two reasons: 1) MaxEnt typically outperforms other methods based on predictive accuracy and 2) the software is particularly easy to use. MaxEnt users must make a number of decisions about how they should select their input data and choose from a wide variety of settings in the software package to build models from these data. The underlying basis for making these decisions is unclear in many studies, and default settings are apparently chosen, even though alternative settings are often more appropriate. In this paper, we provide a detailed explanation of how MaxEnt works and a prospectus on modeling options to enable users to make informed decisions when preparing data, choosing settings and interpreting output. We explain how the choice of background samples reflects prior assumptions, how nonlinear functions of environmental variables (features) are created and selected, how to account for environmentally biased sampling, the interpretation of the various types of model output and the challenges for model evaluation. We demonstrate MaxEnt’s calculations using both simplified simulated data and occurrence data from South Africa on species of the flowering plant family Proteaceae. Throughout, we show how MaxEnt’s outputs vary in response to different settings to highlight the need for making biologically motivated modeling decisions.

2,370 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a review of known cases of mito-nuclear discordance in animal systems and summarize the biogeographic patterns in each instance and identify common drivers of discordance.
Abstract: Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and/or adaptive introgression. In addition, we discuss the problems with inferring the processes causing discordance from biogeographic patterns that are common in many studies. In many cases, authors presented more than one explanation for discordant patterns in a given system, which indicates that likely more data are required. Ideally, to resolve this issue, we see important future work shifting focus from documenting the prevalence of mito-nuclear discordance towards testing hypotheses regarding the drivers of discordance. Indeed, there is great potential for certain cases of mitochondrial introgression to become important natural systems within which to test the effect of different mitochondrial genotypes on whole-animal phenotypes.

1,112 citations