scispace - formally typeset
J

Joao Almeida

Researcher at CERN

Publications -  37
Citations -  4997

Joao Almeida is an academic researcher from CERN. The author has contributed to research in topics: Nucleation & Particle. The author has an hindex of 20, co-authored 37 publications receiving 4004 citations. Previous affiliations of Joao Almeida include University of Lisbon & Goethe University Frankfurt.

Papers
More filters
Journal ArticleDOI

Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation

Jasper Kirkby, +68 more
- 25 Aug 2011 - 
TL;DR: First results from the CLOUD experiment at CERN are presented, finding that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold and ion-induced binary nucleation of H2SO4–H2O can occur in the mid-troposphere but is negligible in the boundary layer.
Journal ArticleDOI

Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere

Joao Almeida, +85 more
- 17 Oct 2013 - 
TL;DR: The results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Journal ArticleDOI

The role of low-volatility organic compounds in initial particle growth in the atmosphere

Jasmin Tröstl, +90 more
- 26 May 2016 - 
TL;DR: It is shown that organic vapours alone can drive nucleation, and a particle growth model is presented that quantitatively reproduces the measurements and implements a parameterization of the first steps of growth in a global aerosol model that can change substantially in response to concentrations of atmospheric cloud concentration nuclei.
Journal ArticleDOI

Ion-induced nucleation of pure biogenic particles

Jasper Kirkby, +95 more
- 26 May 2016 - 
TL;DR: Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Journal ArticleDOI

Oxidation products of biogenic emissions contribute to nucleation of atmospheric particles.

TL;DR: It is shown, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere.