scispace - formally typeset
Search or ask a question
Author

João Atílio Jorge

Bio: João Atílio Jorge is an academic researcher from Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto. The author has contributed to research in topics: Xylanase & Xylan. The author has an hindex of 22, co-authored 36 publications receiving 2823 citations. Previous affiliations of João Atílio Jorge include University of São Paulo & Sao Paulo State University.

Papers
More filters
Journal ArticleDOI
TL;DR: There has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production.
Abstract: Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.

1,214 citations

Journal ArticleDOI
TL;DR: A β-D-xylosidase was purified from cultures of a thermotolerant strain of Aspergillus phoenicis grown on xylan at 45°C and was active against natural substrates, such as xylobiose and xylotriose.
Abstract: A β-D-xylosidase was purified from cultures of a thermotolerant strain of Aspergillus phoenicis grown on xylan at 45°C. The enzyme was purified to homogeneity by chromatography on DEAE-cellulose and Sephadex G-100. The purified enzyme was a monomer of molecular mass 132 kDa by gel filtration and SDS-PAGE. Treatment with endoglycosidase H resulted in a protein with a molecular mass of 104 kDa. The enzyme was a glycoprotein with 43.5% carbohydrate content and exhibited a pI of 3.7. Optima of temperature and pH were 75°C and 4.0–4.5, respectively. The activity was stable at 60°C and had a K m of 2.36 mM for p-nitrophenyl-β-D-xylopiranoside. The enzyme did not exhibit xylanase, cellulase, galactosidase or arabinosidase activities. The purified enzyme was active against natural substrates, such as xylobiose and xylotriose. Journal of Industrial Microbiology & Biotechnology (2001) 26, 156–160.

152 citations

Journal ArticleDOI
TL;DR: It seems that in fungi at least one class of acid trehalases evolved independently from the other trehalase, enabling cells to utilise exogenous trehalose as a carbon source, under the control of carbon catabolic regulatory circuits.
Abstract: The simultaneous presence of two different trehalose-hydrolysing activities has been recognised in several fungal species. While these enzymes, known as acid and neutral trehalases, share a strict specificity for trehalose, they are nevertheless rather different in subcellular localisation and in several biochemical and regulatory properties. The function of these apparently redundant activities in the same cell was not completely understood until recently. Biochemical and genetic studies now suggest that these enzymes may have specialised and exclusive roles in fungal cells. It is thought that neutral trehalases mobilise cytosolic trehalose, under the control of developmental programs, chemical and nutrient signals, or stress responses. On the other hand, acid trehalases appear not to mobilise cytosolic trehalose, but to act as ‘carbon scavenger’ hydrolases enabling cells to utilise exogenous trehalose as a carbon source, under the control of carbon catabolic regulatory circuits. Although much needs to be learned about the molecular identity of trehalases, it seems that in fungi at least one class of acid trehalases evolved independently from the other trehalases.

115 citations

Journal ArticleDOI
TL;DR: The filamentous fungus Aspergillus ochraceus produced high levels of a thermostable extracellular β- d -fructofuranosidase (EC 3.2.1.26) when cultured for 96 h, at 40 °C, in Khanna medium supplemented with sugar cane bagasse as carbon source.

110 citations

Journal ArticleDOI
TL;DR: Two extracellular xylanase produced by the thermotolerant fungus Aspergillus caespitosus grown in sugar cane bagasse were purified and characterized and the action of both xylanases mainly that of xyl II, on kraft pulp reduced kappa number and increased pulp viscosity.

110 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Abstract: The ability to adapt to altered availability of free water is a fundamental property of living cells. The principles underlying osmoadaptation are well conserved. The yeast Saccharomyces cerevisiae is an excellent model system with which to study the molecular biology and physiology of osmoadaptation. Upon a shift to high osmolarity, yeast cells rapidly stimulate a mitogen-activated protein (MAP) kinase cascade, the high-osmolarity glycerol (HOG) pathway, which orchestrates part of the transcriptional response. The dynamic operation of the HOG pathway has been well studied, and similar osmosensing pathways exist in other eukaryotes. Protein kinase A, which seems to mediate a response to diverse stress conditions, is also involved in the transcriptional response program. Expression changes after a shift to high osmolarity aim at adjusting metabolism and the production of cellular protectants. Accumulation of the osmolyte glycerol, which is also controlled by altering transmembrane glycerol transport, is of central importance. Upon a shift from high to low osmolarity, yeast cells stimulate a different MAP kinase cascade, the cell integrity pathway. The transcriptional program upon hypo-osmotic shock seems to aim at adjusting cell surface properties. Rapid export of glycerol is an important event in adaptation to low osmolarity. Osmoadaptation, adjustment of cell surface properties, and the control of cell morphogenesis, growth, and proliferation are highly coordinated processes. The Skn7p response regulator may be involved in coordinating these events. An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.

1,589 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive state of the art describing the advancement in recent pretreaments, metabolic engineering approaches with special emphasis on the latest developments in consolidated biomass processing, current global scenario of bioethanol pilot plants and biorefinery concept for the production of biofuels and bioproducts.

1,369 citations

Journal ArticleDOI
TL;DR: The various hemicelluloses structures present in lignocellulose, the range of pre-treatment and hydrolysis options including the enzymatic ones, and the role of different microbial strains on process integration aiming to reach a meaningful consolidated bioprocessing are reviewed.

1,355 citations

Journal ArticleDOI
TL;DR: There has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production.
Abstract: Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.

1,214 citations

Journal ArticleDOI
TL;DR: Pectinases are one of the most widely distributed enzymes in bacteria, fungi and plants as discussed by the authors, and they have a share of 25% in the global sales of food enzymes.

975 citations