scispace - formally typeset
Search or ask a question
Author

João Carita

Bio: João Carita is an academic researcher from Universidade Nova de Lisboa. The author has contributed to research in topics: Ferredoxin & Superoxide dismutase. The author has an hindex of 3, co-authored 4 publications receiving 159 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that neelaredoxin (Nlr) is the main O2·− scavenger in A. fulgidus and shown that Nlr is able to both reduce and dismutate O 2·−, thus having a bifunctional reactivity towards O2 ·−.
Abstract: Archaeoglobus fulgidus is a hyperthermophilic sulphate-reducing archaeon. It has an optimum growth temperature of 83°C and is described as a strict anaerobe. Its genome lacks any homologue of canonical superoxide (O2·−) dismutases. In this work, we show that neelaredoxin (Nlr) is the main O2·− scavenger in A. fulgidus, by studying both the wild-type and recombinant proteins. Nlr is a 125-amino-acid blue-coloured protein containing a single iron atom/molecule, which in the oxidized state is high spin ferric. This iron centre has a reduction potential of +230 mV at pH 7.0. Nitroblue tetrazolium-stained gel assays of cell-soluble extracts show that Nlr is the main protein from A. fulgidus which is reactive towards O2·−. Furthermore, it is shown that Nlr is able to both reduce and dismutate O2·−, thus having a bifunctional reactivity towards O2·−. Kinetic and spectroscopic studies indicate that Nlr's superoxide reductase activity may allow the cell to eliminate O2·− quickly in a NAD(P)H-dependent pathway. On the other hand, Nlr's superoxide dismutation activity will allow the cell to detoxify O2·− independently of the cell redox status. Its superoxide dismutase activity was estimated to be 59 U mg−1 by the xanthine/xanthine oxidase assay at 25°C. Pulse radiolysis studies with the isolated and reduced Nlr proved unambiguously that it has superoxide dismutase activity; at pH 7.1 and 83°C, the rate constant is 5 × 106 M−1 s−1. Besides the superoxide dismutase activity, soluble cell extracts of A. fulgidus also exhibit catalase and NAD(P)H/oxygen oxidoreductase activities. By putting these findings together with the entire genomic data available, a possible oxygen detoxification mechanism in A. fulgidus is discussed.

68 citations

Journal ArticleDOI
TL;DR: An important contribution to understanding why D. vulgaris Hildenborough has three periplasmic hydrogenases supports their similar physiological role in H2 oxidation and reveals that element availability has a strong influence in their relative expression.
Abstract: Desulfovibrio vulgaris Hildenborough is a good model organism to study hydrogen metabolism in sulfate-reducing bacteria. Hydrogen is a key compound for these organisms, since it is one of their major energy sources in natural habitats and also an intermediate in the energy metabolism. The D. vulgaris Hildenborough genome codes for six different hydrogenases, but only three of them, the periplasmic-facing [FeFe], [FeNi]1, and [FeNiSe] hydrogenases, are usually detected. In this work, we studied the synthesis of each of these enzymes in response to different electron donors and acceptors for growth as well as in response to the availability of Ni and Se. The formation of the three hydrogenases was not very strongly affected by the electron donors or acceptors used, but the highest levels were observed after growth with hydrogen as electron donor and lowest with thiosulfate as electron acceptor. The major effect observed was with inclusion of Se in the growth medium, which led to a strong repression of the [FeFe] and [NiFe]1 hydrogenases and a strong increase in the [NiFeSe] hydrogenase that is not detected in the absence of Se. Ni also led to increased formation of the [NiFe]1 hydrogenase, except for growth with H2, where its synthesis is very high even without Ni added to the medium. Growth with H2 results in a strong increase in the soluble forms of the [NiFe]1 and [NiFeSe] hydrogenases. This study is an important contribution to understanding why D. vulgaris Hildenborough has three periplasmic hydrogenases. It supports their similar physiological role in H2 oxidation and reveals that element availability has a strong influence in their relative expression.

66 citations

Journal ArticleDOI
TL;DR: Seven-iron ferredoxins from the thermoacidophilic archaea Acidianus ambivalens, A. infernus, Metalosphaera prunae and Sulfolobus metallicus were extensively characterised, allowing study of their expression under aerobic and anaerobic growth conditions as well as the putative role in thermal stability of a recently described zinc centre.
Abstract: Seven-iron ferredoxins from the thermoacidophilic archaea Acidianus ambivalens, A. infernus, Metalosphaera prunae and Sulfolobus metallicus were extensively characterised, allowing study of their expression under aerobic and anaerobic growth conditions as well as the putative role in thermal stability of a recently described zinc centre. The archaeon S. metallicus was found to express, under the same growth conditions, two ferredoxins in almost identical amounts, a novelty among Archaea. Most interestingly, these two ferredoxins differ at the N-terminal amino acid sequence in that one has a zinc binding motif (FdA) and the other does not (FdB); in agreement with these findings, FdA contains a zinc ion and FdB does not. These two ferredoxins have identical thermal stabilities, indicating that the zinc atom is not determinant in the protein thermostability. Further, the presence of the additional zinc centre does not interfere with the redox properties of the iron-sulfur clusters since their reduction potentials are almost identical. From the other three archaea, independently of the growth mode in respect to oxygen, only a single zinc-containing ferredoxin was found. EPR studies on the purified proteins, both in the oxidised and dithionite reduced states, allowed the identification of one [3Fe-4S]1+/0 centre and one [4Fe-4S]2+/1+ centre in all proteins studied. The complete sequence of A. ambivalens ferredoxin is reported. Together with the data gathered in this study, the properties of the seven-iron ferredoxins from Sulfolobales so far known are re-discussed.

30 citations

Journal ArticleDOI
TL;DR: The purification and crystallization of the DR1998 catalase from D. radiodurans shows the typical catalases quaternary structure and a preliminary model of the protein structure is built and refinement is currently in progress.
Abstract: The protective mechanisms of Deinococcus radiodurans against primary reactive oxygen species involve nonenzymatic scavengers and a powerful enzymatic antioxidant system including catalases, peroxidases and superoxide dismutases that prevents oxidative damage. Catalase is an enzyme that is responsible for the conversion of H2O2 to O2 and H2O, protecting the organism from the oxidative effect of H2O2. This study reports the purification and crystallization of the DR1998 catalase from D. radiodurans. The crystals diffracted to 2.6 A resolution and belonged to space group C2221, with unit-cell parameters a = 97.33, b = 311.88, c = 145.63 A, suggesting that they contain four molecules per asymmetric unit. The initial phases were determined by molecular replacement and the obtained solution shows the typical catalase quaternary structure. A preliminary model of the protein structure has been built and refinement is currently in progress.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The SORs and three very different types of SOD enzymes are redox-active metalloenzymes that have evolved entirely independently from one another for the purpose of lowering superoxide concentrations, suggesting that, from the start of the rise of O2 on Earth, the chemistry of superoxide has been an important factor during evolution.
Abstract: Superoxide, O2•–, is formed in all living organisms that come in contact with air, and, depending upon its biological context, it may act as a signaling agent, a toxic species, or a harmless intermediate that decomposes spontaneously Its levels are limited in vivo by two different types of enzymes, superoxide reductase (SOR) and superoxide dismutase (SOD) Although superoxide has long been an important factor in evolution, it was not so when life first emerged on Earth at least 35 billion years ago At that time, the early biosphere was highly reducing and lacking in any significant concentrations of dioxygen (O2), very different from what it is today Consequently, there was little or no O2•– and therefore no reason for SOR or SOD enzymes to evolve Instead, the history of biological O2•– probably commences somewhere around 24 billion years ago, when the biosphere started to experience what has been termed the “Great Oxidation Event”, a transformation driven by the increase in O2 levels, formed by cyanobacteria as a product of oxygenic photosynthesis1 The rise of O2 on Earth caused a reshaping of existing metabolic pathways, and it triggered the development of new ones2 Its appearance led to the formation of the so-called “reactive oxygen species” (ROS), for example, superoxide, hydrogen peroxide, and hydroxyl radical, and to a need for antioxidant enzymes and other antioxidant systems to protect against the growing levels of oxidative damage to living systems Dioxygen is a powerful four-electron oxidizing agent, and the product of this reduction is water 1 When O2 is reduced in four sequential one-electron steps, the intermediates formed are the three major ROS, that is, O2•–, H2O2, and HO• 2 3 4 5 Each of these intermediates is a potent oxidizing agent The consequences of their presence to early life must have been an enormous evolutionary challenge In the case of superoxide, we find the SOD and SOR enzymes to be widely distributed throughout current living organisms, both aerobic and anaerobic, suggesting that, from the start of the rise of O2 on Earth, the chemistry of superoxide has been an important factor during evolution The SORs and three very different types of SOD enzymes are redox-active metalloenzymes that have evolved entirely independently from one another for the purpose of lowering superoxide concentrations SORs catalyze the one-electron reduction of O2•– to give H2O2, a reaction requiring two protons per superoxide reacted as well as an external reductant to provide the electron (eq 6) SODs catalyze the disproportionation of superoxide to give O2 and H2O2, a reaction requiring one proton per superoxide reacted, but no external reductant (eq 7) 6 7 All of the SOR enzymes contain only iron, while the three types of SODs are the nickel-containing SODs (NiSOD), the iron- or manganese-containing SODs (FeSOD and MnSOD), and the copper- and zinc-containing SODs (CuZnSOD) Although the structures and other properties of these four types of metalloenzymes are quite different, they all share several characteristics, including the ability to react rapidly and selectively with the small anionic substrate O2•– Consequently, there are some striking similarities between these otherwise dissimilar enzymes, many of which can be explained by considering the nature of the chemical reactivity of O2•– (see below) Numerous valuable reviews describing the SOD and SOR enzymes have appeared over the years, but few have covered and compared all four classes of these enzymes, as we attempt to do here Thus, the purpose of this Review is to describe, compare, and contrast the properties of the SOR and the four SOD enzymes; to summarize what is known about their evolutionary pathways; and to analyze the properties of these enzymes in light of what is known of the inherent chemical reactivity of superoxide

641 citations

Journal ArticleDOI
TL;DR: Through this review, structural features responsible for their redox properties are examined, including knowledge gained from recent progress in fine-tuning the redox centers.
Abstract: Redox reactions play important roles in almost all biological processes, including photosynthesis and respiration, which are two essential energy processes that sustain all life on earth. It is thus not surprising that biology employs redox-active metal ions in these processes. It is largely the redox activity that makes metal ions uniquely qualified as biological cofactors and makes bioinorganic enzymology both fun to explore and challenging to study. Even though most metal ions are redox active, biology employs a surprisingly limited number of them for electron transfer (ET) processes. Prominent members of redox centers involved in ET processes include cytochromes, iron–sulfur clusters, and cupredoxins. Together these centers cover the whole range of reduction potentials in biology (Figure ​(Figure1).1). Because of their importance, general reviews about redox centers1−77 and specific reviews about cytochromes,8,24,78−90 iron–sulfur proteins,91−93 and cupredoxins94−104 have appeared in the literature. In this review, we provide both classification and description of each member of the above redox centers, including both native and designed proteins, as well as those proteins that contain a combination of these redox centers. Through this review, we examine structural features responsible for their redox properties, including knowledge gained from recent progress in fine-tuning the redox centers. Computational studies such as DFT calculations become more and more important in understanding the structure–function relationship and facilitating the fine-tuning of the ET properties and reduction potentials of metallocofactors in proteins. Since this aspect has been reviewed extensively before,105−110 and by other reviews in this thematic issue,2000,2001,2002 it will not be covered here. Open in a separate window Figure 1 Reduction potential range of redox centers in electron transfer processes.

598 citations

Journal ArticleDOI
TL;DR: It is indicated that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation.
Abstract: The number of sequenced genomes of sulfate reducing organisms (SRO) has increased significantly in the recent years, providing an opportunity for a broader perspective into their energy metabolism. In this work we carried out a comparative survey of energy metabolism genes found in 25 available genomes of SRO. This analysis revealed a higher diversity of possible energy conserving pathways than classically considered to be present in these organisms, and permitted the identification of new proteins not known to be present in this group. The Deltaproteobacteria (and Thermodesulfovibrio yellowstonii) are characterized by a large number of cytochromes c and cytochrome c-associated membrane redox complexes, indicating that periplasmic electron transfer pathways are important in these bacteria. The Archaea and Clostridia groups contain practically no cytochromes c or associated membrane complexes. However, despite the absence of a periplasmic space, a few extracytoplasmic membrane redox proteins were detected in the Gram-positive bacteria. Several ion-translocating complexes were detected in SRO including H(+)-pyrophosphatases, complex I homologs, Rnf, and Ech/Coo hydrogenases. Furthermore, we found evidence that cytoplasmic electron bifurcating mechanisms, recently described for other anaerobes, are also likely to play an important role in energy metabolism of SRO. A number of cytoplasmic [NiFe] and [FeFe] hydrogenases, formate dehydrogenases, and heterodisulfide reductase-related proteins are likely candidates to be involved in energy coupling through electron bifurcation, from diverse electron donors such as H(2), formate, pyruvate, NAD(P)H, β-oxidation, and others. In conclusion, this analysis indicates that energy metabolism of SRO is far more versatile than previously considered, and that both chemiosmotic and flavin-based electron bifurcating mechanisms provide alternative strategies for energy conservation.

299 citations