scispace - formally typeset
Search or ask a question
Author

João Victor de Oliveira Santos

Bio: João Victor de Oliveira Santos is an academic researcher from Federal University of Pernambuco. The author has contributed to research in topics: Minimum inhibitory concentration & Bioremediation. The author has an hindex of 2, co-authored 6 publications receiving 19 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It was noticed that the quercetin presented an antibacterial activity against strains of Staphylococcus spp.
Abstract: The aim of this study was to determine the antibacterial and antibiofilm properties of quercetin against clinical isolates of Staphyloccocus aureus and Staphylococcus saprophyticus with resistance profile. The antibacterial activity of quercetin was performed by the determination of the minimum inhibitory concentration (MIC) through the microdilution method according to the Clinical and Laboratory Standards Institute (CLSI). The percentage of inhibition of Staphylococcus spp. biofilm, after treatment with sub-inhibitory concentrations of quercetin (MIC/2 and MIC/4), was evaluated by the violet crystal assay. Quercetin showed an antimicrobial activity against clinical isolates of methicillin-susceptible S. aureus (MSSA) (MIC = 250 µg/ml), methicillin-resistant S. aureus (MRSA) (MIC = 500 µg/ml), vancomycin-intermediate S. aureus (VISA) (MIC = 125 and 150 µg/ml), S. saprophyticus resistant to oxacillin (MIC = 62.5 to 125 µg/ml), vancomycin-resistant S. aureus (VRSA) and S. saprophyticus resistant to oxacillin and vancomycin (MIC = 500 to 1000 µg/ml). At MIC/2 and MIC/4 the quercetin inhibit 46.5 ± 2.7% and 39.4 ± 4.3% of the S. aureus biofilm, respectively, and 51.7 ± 5.5% and 46.9 ± 5.5% of the S. saprophyticus biofilm, respectively. According to the results of this study, it was noticed that the quercetin presented an antibacterial activity against strains of Staphylococcus spp. with resistance profile and also inhibited the bacterial biofilm production even in sub-inhibitory concentrations.

29 citations

Journal ArticleDOI
TL;DR: In this paper, the effectiveness of silver nanoparticles (AgNPs) against resistant bacteria and biofilm formation was evaluated by using scanning transmission electron microscopy (TEM) and the minimum inhibitory concentration and minimum bactericidal concentration (MBC).
Abstract: This study aimed to evaluate the effectiveness of silver nanoparticles–chitosan composites (AgNPs) with different morphologies and particle size distributions against resistant bacteria and biofilm formation. Four different samples were prepared by a two-step procedure using sodium borohydride and ascorbic acid as reducing agents and characterized by UV–Vis absorption spectra, scanning transmission electron microscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the AgNPs were determined according to the Clinical and Laboratory Standards Institute (CLSI) against clinical isolates multidrug-resistant and strains of the American Type Culture Collection (ATCC). An assay was performed to determine the MICs during 20 successive bacteria exposures to AgNPs to investigate whether AgNPs induce tolerance in bacteria. The antibiofilm activities of AgNPs were also evaluated by determining the minimum biofilm inhibitory concentration (MBIC). The spherical AgNPs present diameters ranging from 9.3 to 62.4 nm, and some samples also have rod-, oval-, and triangle-shaped nanoparticles. The MIC and MBC values ranged from 0.8 to 25 μg/mL and 3.1 to 50 μg/mL, respectively. Smaller and spherical AgNPs exhibited the highest activity, but all the AgNPs developed in this study exhibit bactericidal activity. There was no significant MIC increase after 20 passages to the AgNPs. Regarding the antibiofilm activity, MBICs ranged from 12.5 to 50 μg/mL. Again, smaller and spherical nanoparticles presented the best results with phenotypic inhibition of production of slime or exopolysaccharide (EPS) matrix. Thus, it was concluded that AgNPs have a promising potential against resistant bacteria and bacteria that grow on biofilms without inducing tolerance.

11 citations

Journal ArticleDOI
TL;DR: DdeL, a glycoprotein, had agglutinated blood types and was inhibited only by glycoproteins (albumin, azoalbumin and azocasein) and showed higher activity at acid pH than alkaline pH and activity was observed at all temperatures (up to 100 °C).

6 citations

Journal ArticleDOI
TL;DR: In this paper, a review provides an update on the experimental application of antibiotic therapies based on the synergic combination with lectins to treat infections specifically caused by multidrug-resistant and biofilm-producing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa.
Abstract: Antibiotic monotherapy may become obsolete mainly due to the continuous emergence of resistance to available antimicrobials, which represents a major uncertainty to human health. Taking into account that natural products have been an inexhaustible source of new compounds with clinical application, lectins are certainly one of the most versatile groups of proteins used in biological processes, emerging as a promising alternative for therapy. The ability of lectins to recognize carbohydrates present on the cell surface allowed for the discovery of a wide range of activities. Currently the number of antimicrobials in research and development does not match the rate at which resistance mechanisms emerge to an effective antibiotic monotherapy. A promising therapeutic alternative is the combined therapy of antibiotics with lectins to enhance its spectrum of action, minimize adverse effects, and reduce resistance to treatments. Thus, this review provides an update on the experimental application of antibiotic therapies based on the synergic combination with lectins to treat infections specifically caused by multidrug-resistant and biofilm-producing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We also briefly discuss current strategies involving the modulation of the gut microbiota, its implications for antimicrobial resistance, and highlight the potential of lectins to modulate the host immune response against oxidative stress.

3 citations

Journal ArticleDOI
TL;DR: Bioremediation is a technique, based on the metabolic activity of living organisms, which aims to reduce, degrade and/or remove contaminants from the marine and terrestrial ecosystems as discussed by the authors, which is a more economical and more efficient process to minimize waste, compared to the usual physical-chemical treatment methods.
Abstract: Large amount of organic and inorganic compounds are released constantly in the environment as a consequence of human activity and technological and industrial advancement. Environmental pollution by petroleum and petrochemicals, such as petroleum hydrocarbons (PHCs), is considered one of the most serious hazards today due to its worldwide distribution. Contamination by these pollutants causes degradation of global environment and a substantial reduction in biodiversity. In addition, a deep removal of the pollutants is often required to prevent their migration into the water, air and therefore threaten human health. In this way, the search for ecologically sustainable approaches to repair contaminated environments have been of great concern in society. Bioremediation is a technique, based on the metabolic activity of living organisms, which aims to reduce, degrade and/or remove contaminants from the marine and terrestrial ecosystems. It is a more economical and more efficient process to minimize waste, compared to the usual physical-chemical treatment methods. Historically, bioremediation has been used to restore environments polluted by PHCs, where microbial communities play a key role during this course, either by the direct degradation of pollutants or by interaction with other microorganisms. Finally, this review discusses about the soil contamination by PHCs, the role of living organisms in this mechanism and their recent application in bioremediation process.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the antioxidant mechanism and broad-spectrum antibacterial and antiparasite properties of quercetin were elucidated and the potential application in antioncology and cardiovascular protection and anti-immunosuppression treatment.
Abstract: Quercetin is a flavonoid compound widely present in plants and exhibits a variety of biological activities. Research on quercetin has shown its potential for medical application. In this research, we elucidate its antioxidant mechanism and the broad-spectrum antibacterial and antiparasite properties; summarise its potential application in antioncology and cardiovascular protection and anti-immunosuppression treatment; and demonstrate its ability to alleviate the toxicity of mycotoxins. This research is expected to offer some insights and inspirations for the further study of quercetin, its properties, and the scientific basis for its better application in clinical practice.

182 citations

Journal ArticleDOI
TL;DR: A deep understanding of the mechanisms by which biofilms cause tolerance/resistance to antibiotics helps to develop novel strategies to fight these infections as discussed by the authors, which is a global threat for human and animal health.
Abstract: Multidrug resistant bacteria are a global threat for human and animal health. However, they are only part of the problem of antibiotic failure. Another bacterial strategy that contributes to their capacity to withstand antimicrobials is the formation of biofilms. Biofilms are associations of microorganisms embedded a self-produced extracellular matrix. They create particular environments that confer bacterial tolerance and resistance to antibiotics by different mechanisms that depend upon factors such as biofilm composition, architecture, the stage of biofilm development, and growth conditions. The biofilm structure hinders the penetration of antibiotics and may prevent the accumulation of bactericidal concentrations throughout the entire biofilm. In addition, gradients of dispersion of nutrients and oxygen within the biofilm generate different metabolic states of individual cells and favor the development of antibiotic tolerance and bacterial persistence. Furthermore, antimicrobial resistance may develop within biofilms through a variety of mechanisms. The expression of efflux pumps may be induced in various parts of the biofilm and the mutation frequency is induced, while the presence of extracellular DNA and the close contact between cells favor horizontal gene transfer. A deep understanding of the mechanisms by which biofilms cause tolerance/resistance to antibiotics helps to develop novel strategies to fight these infections.

120 citations

Journal ArticleDOI
TL;DR: The antimicrobial activity of quercetin is summarized with a special focus on its mechanistic principle, and the implications for its use as a clinically relevant antimicrobial agent are summarized.
Abstract: Quercetin, an essential plant flavonoid, possesses a variety of pharmacological activities. Extensive literature investigates its antimicrobial activity and possible mechanism of action. Quercetin has been shown to inhibit the growth of different Gram-positive and Gram-negative bacteria as well as fungi and viruses. The mechanism of its antimicrobial action includes cell membrane damage, change of membrane permeability, inhibition of synthesis of nucleic acids and proteins, reduction of expression of virulence factors, mitochondrial dysfunction, and preventing biofilm formation. Quercetin has also been shown to inhibit the growth of various drug-resistant microorganisms, thereby suggesting its use as a potent antimicrobial agent against drug-resistant strains. Furthermore, certain structural modifications of quercetin have sometimes been shown to enhance its antimicrobial activity compared to that of the parent molecule. In this review, we have summarized the antimicrobial activity of quercetin with a special focus on its mechanistic principle. Therefore, this review will provide further insights into the scientific understanding of quercetin’s mechanism of action, and the implications for its use as a clinically relevant antimicrobial agent.

59 citations

Journal ArticleDOI
TL;DR: In this paper , a literature search was systematically done using scientific for the published articles of quercetin, and a total of 345 articles were reviewed, and it was observed that more than 40% of the articles were about the use as an antioxidant agent, more than 25% of studies were about its use as anticancer agent, and articles on antimicrobial activity were more than 15%.
Abstract: Flavonoids are present naturally in many fruits and vegetables including onions, apples, tea, cabbage, cauliflower, berries and nuts which provide us with quercetin, a powerful natural antioxidant and cytotoxic compound. Due to antioxidant property, many nutraceuticals and cosmeceuticals products contain quercetin as a major ingredient nowadays. Current review enlightened sources and quercetin's role as an antioxidant, antimicrobial, antidiabetic, anticancerous and anti-inflammatory agent in medical field during last 5 to 6 years. Literature search was systematically done using scientific for the published articles of quercetin. A total of 345 articles were reviewed, and it was observed that more than 40% of articles were about quercetin's use as an antioxidant agent, more than 25% of studies were about its use as an anticancer agent, and articles on antimicrobial activity were more than 15%. 10% of the articles showed anti-inflamamatory effects of quercetin. Literature search also revealed that quercetin alone and its complexes with chitosan, metal ions and polymers possessed good antidiabetic properties. Thus, the review focuses on new therapeutic interventions and drug delivery system of quercetin in medical field for the benefit of mankind.

58 citations

Journal ArticleDOI
TL;DR: Experimental evidence on anti-biofilm activity of quercetin can open up new horizons in a wide range of biomedical areas, from food industry to medicine.
Abstract: Bacterial biofilms are multicellular aggregates enclosed in a self-created biopolymer matrix. Biofilm-producing bacteria have become a great public health problem worldwide because biofilms enable these microorganisms to evade several clearance mechanisms produced by host and synthetic sources. Over the past years, different flavonoids including quercetin have engrossed considerable interest among researchers owing to their potential anti-biofilm properties. To our knowledge, there is no review regarding effects of quercetin towards bacterial biofilms, prompting us to summarize experimental evidence on its anti-biofilm properties. Quercetin inhibits biofilm development by a diverse array of bacterial pathogens such as Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Pseudomonas aeruginosa. Prevention of bacterial adhesion, suppression of quorum-sensing pathways, disruption or alteration of plasma membrane, inhibition of efflux pumps, and blocking nucleic acid synthesis have been documented as major anti-biofilm mechanisms of quercetin. Overall, anti-biofilm activity of quercetin can open up new horizons in a wide range of biomedical areas, from food industry to medicine.

49 citations