scispace - formally typeset
Search or ask a question
Author

Joaquim Segalés

Bio: Joaquim Segalés is an academic researcher from Autonomous University of Barcelona. The author has contributed to research in topics: Porcine circovirus & Circovirus. The author has an hindex of 68, co-authored 401 publications receiving 17156 citations. Previous affiliations of Joaquim Segalés include University of Zurich & Generalitat of Catalonia.


Papers
More filters
Journal ArticleDOI
23 Sep 2020-Nature
TL;DR: The findings of a World Health Organization expert working group that is developing animal models to test vaccines and therapeutic agents for the treatment of COVID-19, and their relevance for preclinical testing, are reviewed.
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the aetiological agent of coronavirus disease 2019 (COVID-19), an emerging respiratory infection caused by the introduction of a novel coronavirus into humans late in 2019 (first detected in Hubei province, China). As of 18 September 2020, SARS-CoV-2 has spread to 215 countries, has infected more than 30 million people and has caused more than 950,000 deaths. As humans do not have pre-existing immunity to SARS-CoV-2, there is an urgent need to develop therapeutic agents and vaccines to mitigate the current pandemic and to prevent the re-emergence of COVID-19. In February 2020, the World Health Organization (WHO) assembled an international panel to develop animal models for COVID-19 to accelerate the testing of vaccines and therapeutic agents. Here we summarize the findings to date and provides relevant information for preclinical testing of vaccine candidates and therapeutic agents for COVID-19.

630 citations

Journal ArticleDOI
TL;DR: The objective of this review is to summarize the current state of knowledge of the most relevant aspects of PCV2 biology and PCVD.
Abstract: Porcine circovirus type 2 (PCV2) is a member of the family Circoviridae, a recently established virus family composed of small, non-enveloped viruses, with a circular, single-stranded DNA genome. PCV2, which is found all over the world in the domestic pig and probably the wild boar, has been recently associated with a number of disease syndromes, which have been collectively named porcine circovirus diseases (PCVD). Postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis and nephropathy syndrome (PDNS) and reproductive disorders are the most relevant ones. Among them, only PMWS is considered to have a severe impact on domestic swine production. PMWS mainly affects nursery and/or fattening pigs; wasting is considered the most representative clinical sign in this disease. Diagnosis of this disease is confirmed by histopathological examination of lymphoid tissues and detection of a moderate to high amount of PCV2 in damaged tissues. Since PMWS is considered a multifactorial disease in which other factors in addition to PCV2 are needed in most cases to trigger the clinical disease, effective control measures have focused on the understanding of the co-factors involved in individual farms and the control or elimination of these triggers. PDNS, an immuno-complex disease characterized by fibrino-necrotizing glomerulonephritis and systemic necrotizing vasculitis, has been linked to PCV2, but a definitive proof of this association is still lacking. PCV2-associated reproductive disease seems to occur very sporadically under field conditions, but it has been characterized by late-term abortions and stillbirths, extensive fibrosing and/or necrotizing myocarditis in fetuses and the presence of moderate to high amounts of PCV2 in these lesions. Taking into account that scientific information on PCV2 and its associated diseases has been markedly expanded in the last 8 years, the objective of this review is to summarize the current state of knowledge of the most relevant aspects of PCV2 biology and PCVD.

534 citations

Journal Article
TL;DR: A review of the current state of knowledge of the most relevant aspects of PCV2 biology and PCVD can be found in this article, where the authors summarize the current information on PCV 2 and its associated diseases.
Abstract: Abstract Porcine circovirus type 2 (PCV2) is a member of the family Circoviridae, a recently established virus family composed of small, non-enveloped viruses, with a circular, single-stranded DNA genome. PCV2, which is found all over the world in the domestic pig and probably the wild boar, has been recently associated with a number of disease syndromes, which have been collectively named porcine circovirus diseases (PCVD). Postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis and nephropathy syndrome (PDNS) and reproductive disorders are the most relevant ones. Among them, only PMWS is considered to have a severe impact on domestic swine production. PMWS mainly affects nursery and/or fattening pigs; wasting is considered the most representative clinical sign in this disease. Diagnosis of this disease is confirmed by histopathological examination of lymphoid tissues and detection of a moderate to high amount of PCV2 in damaged tissues. Since PMWS is considered a multifactorial disease in which other factors in addition to PCV2 are needed in most cases to trigger the clinical disease, effective control measures have focused on the understanding of the co-factors involved in individual farms and the control or elimination of these triggers. PDNS, an immuno-complex disease characterized by fibrino-necrotizing glomerulonephritis and systemic necrotizing vasculitis, has been linked to PCV2, but a definitive proof of this association is still lacking. PCV2-associated reproductive disease seems to occur very sporadically under field conditions, but it has been characterized by late-term abortions and stillbirths, extensive fibrosing and/or necrotizing myocarditis in fetuses and the presence of moderate to high amounts of PCV2 in these lesions. Taking into account that scientific information on PCV2 and its associated diseases has been markedly expanded in the last 8 years, the objective of this review is to summarize the current state of knowledge of the most relevant aspects of PCV2 biology and PCVD.

503 citations

Journal ArticleDOI
TL;DR: The objective of the present review is to update the current knowledge on the clinical and pathological scope of PCV2 infections, as well as on their diagnosis, and a proposal on a unified PCVD/PCVAD terminology and clearly defined diagnostic criteria for these conditions are given.

450 citations

Journal ArticleDOI
TL;DR: Fifteen pigs from five farms on which there had been a previous clinical and histopathological diagnosis of postweaning multisystemic wasting syndrome (PMWS) were investigated, and lymphoid lesions were suggestive of immunosuppression.

397 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronav virus into the human population in the twenty-first century, and the current state of development of measures to combat emerging coronaviruses is discussed.
Abstract: The emergence of Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second introduction of a highly pathogenic coronavirus into the human population in the twenty-first century. The continuing introductions of MERS-CoV from dromedary camels, the subsequent travel-related viral spread, the unprecedented nosocomial outbreaks and the high case-fatality rates highlight the need for prophylactic and therapeutic measures. Scientific advancements since the 2002-2003 severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic allowed for rapid progress in our understanding of the epidemiology and pathogenesis of MERS-CoV and the development of therapeutics. In this Review, we detail our present understanding of the transmission and pathogenesis of SARS-CoV and MERS-CoV, and discuss the current state of development of measures to combat emerging coronaviruses.

2,794 citations

Journal ArticleDOI
TL;DR: It is shown that neutralization level is highly predictive of immune protection, and an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic is provided.
Abstract: Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4–28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7–13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic. Estimates of the levels of neutralizing antibodies necessary for protection against symptomatic SARS-CoV-2 or severe COVID-19 are a fraction of the mean level in convalescent serum and will be useful in guiding vaccine rollouts.

2,705 citations