scispace - formally typeset
Search or ask a question
Author

Joaquín J. Torres

Bio: Joaquín J. Torres is an academic researcher from University of Granada. The author has contributed to research in topics: Attractor & Artificial neural network. The author has an hindex of 26, co-authored 137 publications receiving 2205 citations. Previous affiliations of Joaquín J. Torres include Radboud University Nijmegen & University of California, San Diego.


Papers
More filters
Journal ArticleDOI
TL;DR: The higher-order Kuramoto model is formulated which describes the interactions between oscillators placed not only on nodes but also on links, triangles, and so on and can lead to an explosive synchronization transition by using an adaptive coupling dependent on the solenoidal and the irrotational component of the dynamics.
Abstract: The higher-order interactions of complex systems, such as the brain, are captured by their simplicial complex structure and have a significant effect on dynamics. However, the existing dynamical models defined on simplicial complexes make the strong assumption that the dynamics resides exclusively on the nodes. Here we formulate the higher-order Kuramoto model which describes the interactions between oscillators placed not only on nodes but also on links, triangles, and so on. We show that higher-order Kuramoto dynamics can lead to an explosive synchronization transition by using an adaptive coupling dependent on the solenoidal and the irrotational component of the dynamics.

175 citations

Journal ArticleDOI
TL;DR: This work defines the ensemble of correlated networks and obtains the associated Shannon entropy, providing a neutral model from which, in the absence of further knowledge regarding network evolution, one can obtain the expected value of correlations.
Abstract: Why are most empirical networks, with the prominent exception of social ones, generically degree-degree anticorrelated? To answer this long-standing question, we define the ensemble of correlated networks and obtain the associated Shannon entropy. Maximum entropy can correspond to either assortative (correlated) or disassortative (anticorrelated) configurations, but in the case of highly heterogeneous, scale-free networks a certain disassortativity is predicted---offering a parsimonious explanation for the question above. Our approach provides a neutral model from which, in the absence of further knowledge regarding network evolution, one can obtain the expected value of correlations. When empirical observations deviate from the neutral predictions---as happens for social networks---one can then infer that there are specific correlating mechanisms at work.

146 citations

Journal ArticleDOI
TL;DR: It is shown that cortical neural networks obeying neural dynamics is dissipative and there is a loading mechanism "charging" progressively the background synaptic strength, which means that unless parameters are fine tuned, their dynamics is either sub- or super-critical, even if the pseudo-critical region is relatively broad.
Abstract: Recent experiments on cortical neural networks have revealed the existence of well-defined avalanches of electrical activity. Such avalanches have been claimed to be generically scale invariant?i.e.?power law distributed?with many exciting implications in neuroscience. Recently, a self-organized model has been proposed by Levina, Herrmann and Geisel to explain this empirical finding. Given that (i) neural dynamics is dissipative and (ii) there is a loading mechanism progressively 'charging' the background synaptic strength, this model/dynamics is very similar in spirit to forest-fire and earthquake models, archetypical examples of non-conserving self-organization, which have recently been shown to lack true criticality. Here we show that cortical neural networks obeying (i) and (ii) are not generically critical; unless parameters are fine-tuned, their dynamics is either subcritical or supercritical, even if the pseudo-critical region is relatively broad. This conclusion seems to be in agreement with the most recent experimental observations. The main implication of our work is that, if future experimental research on cortical networks were to support the observation that truly critical avalanches are the norm and not the exception, then one should look for more elaborate (adaptive/evolutionary) explanations, beyond simple self-organization, to account for this.

131 citations

Journal ArticleDOI
TL;DR: The results demonstrate an appearance of a novel phase characterized by quick transitions from one memory state to another, which might reflect the flexibility of real neural systems and their readiness to receive and respond to novel and changing external stimuli.
Abstract: We have examined a role of dynamic synapses in the stochastic Hopfield-like network behavior. Our results demonstrate an appearance of a novel phase characterized by quick transitions from one memory state to another. The network is able to retrieve memorized patterns corresponding to classical ferromagnetic states but switches between memorized patterns with an intermittent type of behavior. This phenomenon might reflect the flexibility of real neural systems and their readiness to receive and respond to novel and changing external stimuli.

112 citations

Journal ArticleDOI
TL;DR: It is demonstrated that, at finite temperature, the capacity to store and retrieve binary patterns is higher for ANN with scale-free (SF) topology than for highly random-diluted Hopfield networks with the same number of synapses.

77 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The major concepts and results recently achieved in the study of the structure and dynamics of complex networks are reviewed, and the relevant applications of these ideas in many different disciplines are summarized, ranging from nonlinear science to biology, from statistical mechanics to medicine and engineering.

9,441 citations

Journal ArticleDOI
06 Jun 1986-JAMA
TL;DR: The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or her own research.
Abstract: I have developed "tennis elbow" from lugging this book around the past four weeks, but it is worth the pain, the effort, and the aspirin. It is also worth the (relatively speaking) bargain price. Including appendixes, this book contains 894 pages of text. The entire panorama of the neural sciences is surveyed and examined, and it is comprehensive in its scope, from genomes to social behaviors. The editors explicitly state that the book is designed as "an introductory text for students of biology, behavior, and medicine," but it is hard to imagine any audience, interested in any fragment of neuroscience at any level of sophistication, that would not enjoy this book. The editors have done a masterful job of weaving together the biologic, the behavioral, and the clinical sciences into a single tapestry in which everyone from the molecular biologist to the practicing psychiatrist can find and appreciate his or

7,563 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations