scispace - formally typeset
Search or ask a question
Author

Jocelyn K. Schulz

Bio: Jocelyn K. Schulz is an academic researcher from New York University. The author has contributed to research in topics: Multipath propagation & Path loss. The author has an hindex of 4, co-authored 4 publications receiving 6567 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations

Proceedings ArticleDOI
09 Jun 2013
TL;DR: Reflection coefficients and penetration losses for common building materials at 28 GHz show that outdoor building materials are excellent reflectors with the largest measured reflection coefficient of 0.896 for tinted glass as compared to indoor building materials that are less reflective.
Abstract: In this paper, we present reflection coefficients and penetration losses for common building materials at 28 GHz for the design and deployment of future millimeter wave mobile communication networks. Reflections from walls and buildings and penetration losses were measured for indoor and outdoor materials, such as tinted glass, clear glass, brick, concrete, and drywall at 28 GHz in New York City. A 400 Mega-chip-per-second sliding correlator channel sounder and 24.5 dBi steerable horn antennas were used to emulate future mobile devices with adaptive antennas that will likely be used in future millimeter wave cellular systems [1]. Measurements in and around buildings show that outdoor building materials are excellent reflectors with the largest measured reflection coefficient of 0.896 for tinted glass as compared to indoor building materials that are less reflective. We also found that penetration loss is dependent not only on the number of obstructions and distance between transmitter and receiver, but also on the surrounding environment. The greatest penetration loss containing three interior walls of an office building was found to be 45.1 dB, with 11.39 m separation between the transmitter and receiver.

439 citations

Proceedings ArticleDOI
09 Jun 2013
TL;DR: The world's first empirical measurements for 28 GHz outdoor cellular propagation in New York City are presented, suggesting that millimeter wave mobile communication systems with electrically steerable antennas could exploit resolvable multipath components to create viable links for cell sizes on the order of 200 m.
Abstract: The millimeter wave frequency spectrum offers unprecedented bandwidths for future broadband cellular networks. This paper presents the world's first empirical measurements for 28 GHz outdoor cellular propagation in New York City. Measurements were made in Manhattan for three different base station locations and 75 receiver locations over distances up to 500 meters. A 400 megachip-per-second channel sounder and directional horn antennas were used to measure propagation characteristics for future mm-wave cellular systems in urban environments. This paper presents measured path loss as a function of the transmitter - receiver separation distance, the angular distribution of received power using directional 24.5 dBi antennas, and power delay profiles observed in New York City. The measured data show that a large number of resolvable multipath components exist in both non line of sight and line of sight environments, with observed multipath excess delay spreads (20 dB) as great as 1388.4 ns and 753.5 ns, respectively. The widely diverse spatial channels observed at any particular location suggest that millimeter wave mobile communication systems with electrically steerable antennas could exploit resolvable multipath components to create viable links for cell sizes on the order of 200 m.

400 citations

Proceedings ArticleDOI
02 Jun 2013
TL;DR: This work shows that New York City is a multipath-rich environment when using highly directional steerable horn antennas, and that an average of 2.5 signal lobes exists at any receiver location, and proposes here a new lobe modeling technique that can be used to create a statistical channel model for lobe path loss and shadow fading.
Abstract: Propagation measurements at 28 GHz were conducted in outdoor urban environments in New York City using four different transmitter locations and 83 receiver locations with distances of up to 500 m. A 400 mega- chip per second channel sounder with steerable 24.5 dBi horn antennas at the transmitter and receiver was used to measure the angular distributions of received multipath power over a wide range of propagation distances and urban settings. Measurements were also made to study the small-scale fading of closely-spaced power delay profiles recorded at half-wavelength (5.35 mm) increments along a small-scale linear track (10 wavelengths, or 107 mm) at two different receiver locations. Our measurements indicate that power levels for small- scale fading do not significantly fluctuate from the mean power level at a fixed angle of arrival. We propose here a new lobe modeling technique that can be used to create a statistical channel model for lobe path loss and shadow fading, and we provide many model statistics as a function of transmitter- receiver separation distance. Our work shows that New York City is a multipath-rich environment when using highly directional steerable horn antennas, and that an average of 2.5 signal lobes exists at any receiver location, where each lobe has an average total angle spread of 40.3° and an RMS angle spread of 7.8°. This work aims to create a 28 GHz statistical spatial channel model for future 5G cellular networks.

239 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backward compatibility. Indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities, and unprecedented numbers of antennas. However, unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

7,139 citations

Journal ArticleDOI
TL;DR: The motivation for new mm-wave cellular systems, methodology, and hardware for measurements are presented and a variety of measurement results are offered that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.
Abstract: The global bandwidth shortage facing wireless carriers has motivated the exploration of the underutilized millimeter wave (mm-wave) frequency spectrum for future broadband cellular communication networks. There is, however, little knowledge about cellular mm-wave propagation in densely populated indoor and outdoor environments. Obtaining this information is vital for the design and operation of future fifth generation cellular networks that use the mm-wave spectrum. In this paper, we present the motivation for new mm-wave cellular systems, methodology, and hardware for measurements and offer a variety of measurement results that show 28 and 38 GHz frequencies can be used when employing steerable directional antennas at base stations and mobile devices.

6,708 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications.
Abstract: New research directions will lead to fundamental changes in the design of future fifth generation (5G) cellular networks. This article describes five technologies that could lead to both architectural and component disruptive design changes: device-centric architectures, millimeter wave, massive MIMO, smarter devices, and native support for machine-to-machine communications. The key ideas for each technology are described, along with their potential impact on 5G and the research challenges that remain.

3,711 citations

Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations

Journal ArticleDOI
05 Feb 2014
TL;DR: Measurements and capacity studies are surveyed to assess mmW technology with a focus on small cell deployments in urban environments and it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities.
Abstract: Millimeter-wave (mmW) frequencies between 30 and 300 GHz are a new frontier for cellular communication that offers the promise of orders of magnitude greater bandwidths combined with further gains via beamforming and spatial multiplexing from multielement antenna arrays. This paper surveys measurements and capacity studies to assess this technology with a focus on small cell deployments in urban environments. The conclusions are extremely encouraging; measurements in New York City at 28 and 73 GHz demonstrate that, even in an urban canyon environment, significant non-line-of-sight (NLOS) outdoor, street-level coverage is possible up to approximately 200 m from a potential low-power microcell or picocell base station. In addition, based on statistical channel models from these measurements, it is shown that mmW systems can offer more than an order of magnitude increase in capacity over current state-of-the-art 4G cellular networks at current cell densities. Cellular systems, however, will need to be significantly redesigned to fully achieve these gains. Specifically, the requirement of highly directional and adaptive transmissions, directional isolation between links, and significant possibilities of outage have strong implications on multiple access, channel structure, synchronization, and receiver design. To address these challenges, the paper discusses how various technologies including adaptive beamforming, multihop relaying, heterogeneous network architectures, and carrier aggregation can be leveraged in the mmW context.

2,452 citations