scispace - formally typeset
Search or ask a question
Author

Jocelyne Bédard

Bio: Jocelyne Bédard is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 475 citations.

Papers
More filters
01 Apr 2005

475 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the use of chitosan and its grafted and crosslinked derivatives for dye removal from aqueous solutions can be found in this paper, which summarizes the key advances and results that have been obtained in their decolorizing application as biosorbents.

1,974 citations

Journal ArticleDOI
TL;DR: A focused and systematic review of articles that specifically address SDM reveals that there is no shared definition ofSDM and proposes a definition that integrates the extant literature base and outlines essential elements that must be present for patients and providers to engage in the process of SDM.

1,315 citations

Journal ArticleDOI
TL;DR: Recommendations are provided about these aspects, applicable to both the paediatric and adult testing environment, whilst outlining the important principles that are essential for the reader to understand.
Abstract: Inert gas washout tests, performed using the single- or multiple-breath washout technique, were first described over 60 years ago. As measures of ventilation distribution inhomogeneity, they offer complementary information to standard lung function tests, such as spirometry, as well as improved feasibility across wider age ranges and improved sensitivity in the detection of early lung damage. These benefits have led to a resurgence of interest in these techniques from manufacturers, clinicians and researchers, yet detailed guidelines for washout equipment specifications, test performance and analysis are lacking. This manuscript provides recommendations about these aspects, applicable to both the paediatric and adult testing environment, whilst outlining the important principles that are essential for the reader to understand. These recommendations are evidence based, where possible, but in many places represent expert opinion from a working group with a large collective experience in the techniques discussed. Finally, the important issues that remain unanswered are highlighted. By addressing these important issues and directing future research, the hope is to facilitate the incorporation of these promising tests into routine clinical practice.

612 citations

Journal ArticleDOI
TL;DR: This work presents a subgradient algorithm for generating approximate saddle points and provides per-iteration convergence rate estimates on the constructed solutions, and focuses on Lagrangian duality, where it is shown this algorithm is particularly well-suited for problems where the subgradient of the dual function cannot be evaluated easily.
Abstract: We study subgradient methods for computing the saddle points of a convex-concave function. Our motivation comes from networking applications where dual and primal-dual subgradient methods have attracted much attention in the design of decentralized network protocols. We first present a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rate estimates on the constructed solutions. We then focus on Lagrangian duality, where we consider a convex primal optimization problem and its Lagrangian dual problem, and generate approximate primal-dual optimal solutions as approximate saddle points of the Lagrangian function. We present a variation of our subgradient method under the Slater constraint qualification and provide stronger estimates on the convergence rate of the generated primal sequences. In particular, we provide bounds on the amount of feasibility violation and on the primal objective function values at the approximate solutions. Our algorithm is particularly well-suited for problems where the subgradient of the dual function cannot be evaluated easily (equivalently, the minimum of the Lagrangian function at a dual solution cannot be computed efficiently), thus impeding the use of dual subgradient methods.

497 citations

Journal ArticleDOI
TL;DR: This work provides estimates on the primal infeasibility and primal suboptimality of the generated approximate primal solutions and provides a basis for analyzing the trade-offs between the desired level of error and the selection of the stepsize value.
Abstract: In this paper, we study methods for generating approximate primal solutions as a byproduct of subgradient methods applied to the Lagrangian dual of a primal convex (possibly nondifferentiable) constrained optimization problem. Our work is motivated by constrained primal problems with a favorable dual problem structure that leads to efficient implementation of dual subgradient methods, such as the recent resource allocation problems in large-scale networks. For such problems, we propose and analyze dual subgradient methods that use averaging schemes to generate approximate primal optimal solutions. These algorithms use a constant stepsize in view of its simplicity and practical significance. We provide estimates on the primal infeasibility and primal suboptimality of the generated approximate primal solutions. These estimates are given per iteration, thus providing a basis for analyzing the trade-offs between the desired level of error and the selection of the stepsize value. Our analysis relies on the Slater condition and the inherited boundedness properties of the dual problem under this condition. It also relies on the boundedness of subgradients, which is ensured by assuming the compactness of the constraint set.

437 citations