scispace - formally typeset
Search or ask a question

Showing papers by "Joel A. Tropp published in 2007"


Journal ArticleDOI
TL;DR: It is demonstrated theoretically and empirically that a greedy algorithm called orthogonal matching pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal.
Abstract: This paper demonstrates theoretically and empirically that a greedy algorithm called orthogonal matching pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called basis pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

8,604 citations


01 Aug 2007
TL;DR: In this paper, a greedy algorithm called Orthogonal Matching Pursuit (OMP) was proposed to recover a signal with m nonzero entries in dimension 1 given O(m n d) random linear measurements of that signal.
Abstract: This report demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(mln d) random linear measurements of that signal. This is a massive improvement over previous results, which require O(m2) measurements. The new results for OMP are comparable with recent results for another approach called Basis Pursuit (BP). In some settings, the OMP algorithm is faster and easier to implement, so it is an attractive alternative to BP for signal recovery problems.

7,124 citations


Proceedings ArticleDOI
11 Jun 2007
TL;DR: A randomized measurement ensemble and a signal reconstruction algorithm that satisfy four requirements and is a fully polynomial approximation scheme with respect to this type of error bound.
Abstract: Compressed Sensing is a new paradigm for acquiring the compressible signals that arise in many applications. These signals can be approximated using an amount of information much smaller than the nominal dimension of the signal. Traditional approaches acquire the entire signal and process it to extract the information. The new approach acquires a small number of nonadaptive linear measurements of the signal and uses sophisticated algorithms to determine its information content. Emerging technologies can compute these general linear measurements of a signal at unit cost per measurement.This paper exhibits a randomized measurement ensemble and a signal reconstruction algorithm that satisfy four requirements: 1. The measurement ensemble succeeds for all signals, with high probability over the random choices in its construction. 2. The number of measurements of the signal is optimal, except for a factor polylogarithmic in the signal length. 3. The running time of the algorithm is polynomial in the amount of information in the signal and polylogarithmic in the signal length. 4. The recovery algorithm offers the strongest possible type of error guarantee. Moreover, it is a fully polynomial approximation scheme with respect to this type of error bound.Emerging applications demand this level of performance. Yet no otheralgorithm in the literature simultaneously achieves all four of these desiderata.

337 citations


Journal ArticleDOI
TL;DR: This article uses field theory to provide detailed conditions on real and complex ETFs and describes restrictions on harmonic ETFs, a specific type of complex ETF that appears in applications.

282 citations


Journal ArticleDOI
TL;DR: This paper discusses a new class of matrix nearness problems that measure approximation error using a directed distance measure called a Bregman divergence, and proposes a framework for studying these problems, discusses some specific matrixNearness problems, and provides algorithms for solving them numerically.
Abstract: This paper discusses a new class of matrix nearness problems that measure approximation error using a directed distance measure called a Bregman divergence. Bregman divergences offer an important generalization of the squared Frobenius norm and relative entropy, and they all share fundamental geometric properties. In addition, these divergences are intimately connected with exponential families of probability distributions. Therefore, it is natural to study matrix approximation problems with respect to Bregman divergences. This article proposes a framework for studying these problems, discusses some specific matrix nearness problems, and provides algorithms for solving them numerically. These algorithms apply to many classical and novel problems, and they admit a striking geometric interpretation.

193 citations


Posted Content
TL;DR: In this paper, a numerical method for finding good packings in Grassmannian manifolds equipped with various metrics is described, which can be used to produce packings of subspaces in real and complex grassmannian spaces equipped with the Fubini--Study distance.
Abstract: This paper describes a numerical method for finding good packings in Grassmannian manifolds equipped with various metrics. This investigation also encompasses packing in projective spaces. In each case, producing a good packing is equivalent to constructing a matrix that has certain structural and spectral properties. By alternately enforcing the structural condition and then the spectral condition, it is often possible to reach a matrix that satisfies both. One may then extract a packing from this matrix. This approach is both powerful and versatile. In cases where experiments have been performed, the alternating projection method yields packings that compete with the best packings recorded. It also extends to problems that have not been studied numerically. For example, it can be used to produce packings of subspaces in real and complex Grassmannian spaces equipped with the Fubini--Study distance; these packings are valuable in wireless communications. One can prove that some of the novel configurations constructed by the algorithm have packing diameters that are nearly optimal.

107 citations


Journal ArticleDOI
TL;DR: In this paper, the authors survey the linear independence of spikes and sines and provide new results for the case where the locations of the spikes and the frequencies of the sines are chosen at random.
Abstract: The purpose of this work is to survey what is known about the linear independence of spikes and sines. The paper provides new results for the case where the locations of the spikes and the frequencies of the sines are chosen at random. This problem is equivalent to studying the spectral norm of a random submatrix drawn from the discrete Fourier transform matrix. The proof involves depends on an extrapolation argument of Bourgain and Tzafriri.

36 citations