scispace - formally typeset
Search or ask a question
Author

Joel A. Tropp

Bio: Joel A. Tropp is an academic researcher from California Institute of Technology. The author has contributed to research in topics: Matrix (mathematics) & Convex optimization. The author has an hindex of 67, co-authored 173 publications receiving 49525 citations. Previous affiliations of Joel A. Tropp include Rice University & University of Michigan.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that every positive-definite matrix can be written as a positive linear combination of outer products of integer-valued vectors whose entries are bounded by the geometric mean of the condition number and the dimension of the matrix.
Abstract: This paper establishes that every positive-definite matrix can be written as a positive linear combination of outer products of integer-valued vectors whose entries are bounded by the geometric mean of the condition number and the dimension of the matrix.

2 citations

Journal ArticleDOI
TL;DR: A jackknife resampling method to estimate the variability of the output of a randomized matrix computation, which can recognize that a computation requires additional data or that the computation is intrinsically unstable.
Abstract: . Randomized algorithms based on sketching have become a workhorse tool in low-rank matrix approximation. To use these algorithms safely in applications, they should be coupled with diagnostics to assess the quality of approximation. To meet this need, this paper proposes a jackknife resampling method to estimate the variability of the output of a randomized matrix computation. The variability estimate can recognize that a computation requires additional data or that the computation is intrinsically unstable. As examples, the paper studies jackknife estimates for two randomized low-rank matrix approximation algorithms. In each case, the operation count for the jackknife estimate is independent of the dimensions of the target matrix. In numerical experiments, the estimator accurately assesses variability and also provides an order-of-magnitude estimate of the mean-square error.

2 citations

13 Jul 2022
TL;DR: In this article , the authors proposed a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation.
Abstract: Randomized matrix algorithms have become workhorse tools in scientific computing and machine learning. To use these algorithms safely in applications, they should be coupled with posterior error estimates to assess the quality of the output. To meet this need, this paper proposes two diagnostics: a leave-one-out error estimator for randomized low-rank approximations and a jackknife resampling method to estimate the variance of the output of a randomized matrix computation. Both of these diagnostics are rapid to compute for randomized low-rank approximation algorithms such as the randomized SVD and Nystr\"om, and they provide useful information that can be used to assess the quality of the computed output and guide algorithmic parameter choices.

1 citations

07 Feb 2023
TL;DR: In particular, a refined concentration bound for the spectral density is required to obtain complexity guarantees for these random Hamiltonians as mentioned in this paper , which is the case for most random sparse Hamiltonians, and the maximally mixed state is a sufficiently good trial state, and phase estimation efficiently prepares states with energy arbitrarily close to ground energy.
Abstract: A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems. For this task, there is a well-studied quantum algorithm that performs quantum phase estimation on an initial trial state that has a nonnegligible overlap with a low-energy state. However, it is notoriously hard to give theoretical guarantees that such a trial state can be prepared efficiently. Moreover, the heuristic proposals that are currently available, such as with adiabatic state preparation, appear insufficient in practical cases. This paper shows that, for most random sparse Hamiltonians, the maximally mixed state is a sufficiently good trial state, and phase estimation efficiently prepares states with energy arbitrarily close to the ground energy. Furthermore, any low-energy state must have nonnegligible quantum circuit complexity, suggesting that low-energy states are classically nontrivial and phase estimation is the optimal method for preparing such states (up to polynomial factors). These statements hold for two models of random Hamiltonians: (i) a sum of random signed Pauli strings and (ii) a random signed $d$-sparse Hamiltonian. The main technical argument is based on some new results in nonasymptotic random matrix theory. In particular, a refined concentration bound for the spectral density is required to obtain complexity guarantees for these random Hamiltonians.

1 citations


Cited by
More filters
Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.
Abstract: This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f/spl isin/C/sup N/ and a randomly chosen set of frequencies /spl Omega/. Is it possible to reconstruct f from the partial knowledge of its Fourier coefficients on the set /spl Omega/? A typical result of this paper is as follows. Suppose that f is a superposition of |T| spikes f(t)=/spl sigma//sub /spl tau//spl isin/T/f(/spl tau/)/spl delta/(t-/spl tau/) obeying |T|/spl les/C/sub M//spl middot/(log N)/sup -1/ /spl middot/ |/spl Omega/| for some constant C/sub M/>0. We do not know the locations of the spikes nor their amplitudes. Then with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the /spl lscr//sub 1/ minimization problem. In short, exact recovery may be obtained by solving a convex optimization problem. We give numerical values for C/sub M/ which depend on the desired probability of success. Our result may be interpreted as a novel kind of nonlinear sampling theorem. In effect, it says that any signal made out of |T| spikes may be recovered by convex programming from almost every set of frequencies of size O(|T|/spl middot/logN). Moreover, this is nearly optimal in the sense that any method succeeding with probability 1-O(N/sup -M/) would in general require a number of frequency samples at least proportional to |T|/spl middot/logN. The methodology extends to a variety of other situations and higher dimensions. For example, we show how one can reconstruct a piecewise constant (one- or two-dimensional) object from incomplete frequency samples - provided that the number of jumps (discontinuities) obeys the condition above - by minimizing other convex functionals such as the total variation of f.

14,587 citations

Journal ArticleDOI
TL;DR: The theory of compressive sampling, also known as compressed sensing or CS, is surveyed, a novel sensing/sampling paradigm that goes against the common wisdom in data acquisition.
Abstract: Conventional approaches to sampling signals or images follow Shannon's theorem: the sampling rate must be at least twice the maximum frequency present in the signal (Nyquist rate). In the field of data conversion, standard analog-to-digital converter (ADC) technology implements the usual quantized Shannon representation - the signal is uniformly sampled at or above the Nyquist rate. This article surveys the theory of compressive sampling, also known as compressed sensing or CS, a novel sensing/sampling paradigm that goes against the common wisdom in data acquisition. CS theory asserts that one can recover certain signals and images from far fewer samples or measurements than traditional methods use.

9,686 citations

Journal ArticleDOI
TL;DR: A novel algorithm for adapting dictionaries in order to achieve sparse signal representations, the K-SVD algorithm, an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data.
Abstract: In recent years there has been a growing interest in the study of sparse representation of signals. Using an overcomplete dictionary that contains prototype signal-atoms, signals are described by sparse linear combinations of these atoms. Applications that use sparse representation are many and include compression, regularization in inverse problems, feature extraction, and more. Recent activity in this field has concentrated mainly on the study of pursuit algorithms that decompose signals with respect to a given dictionary. Designing dictionaries to better fit the above model can be done by either selecting one from a prespecified set of linear transforms or adapting the dictionary to a set of training signals. Both of these techniques have been considered, but this topic is largely still open. In this paper we propose a novel algorithm for adapting dictionaries in order to achieve sparse signal representations. Given a set of training signals, we seek the dictionary that leads to the best representation for each member in this set, under strict sparsity constraints. We present a new method-the K-SVD algorithm-generalizing the K-means clustering process. K-SVD is an iterative method that alternates between sparse coding of the examples based on the current dictionary and a process of updating the dictionary atoms to better fit the data. The update of the dictionary columns is combined with an update of the sparse representations, thereby accelerating convergence. The K-SVD algorithm is flexible and can work with any pursuit method (e.g., basis pursuit, FOCUSS, or matching pursuit). We analyze this algorithm and demonstrate its results both on synthetic tests and in applications on real image data

8,905 citations