scispace - formally typeset
Search or ask a question
Author

Joël Aerts

Bio: Joël Aerts is an academic researcher from University of Liège. The author has contributed to research in topics: MPPF & Neuroscience of sleep. The author has an hindex of 27, co-authored 62 publications receiving 5039 citations.


Papers
More filters
Journal ArticleDOI
12 Sep 1996-Nature
TL;DR: A group study of seven subjects who maintained steady REM sleep during brain scanning and recalled dreams upon awakening shows that regional cerebral blood flow is positively correlated with REM sleep in pontine tegmentum, left thalamus, both amygdaloid complexes, anterior cingulate cortex and right parietal operculum.
Abstract: RAPID-EYE-MOVEMENT (REM) sleep is associated with intense neuronal activity, ocular saccades, muscular atonia and dreaming1,2. The function of REM sleep remains elusive and its neural correlates have not been characterized precisely in man. Here we use positron emission tomography and statistical parametric mapping to study the brain state associated with REM sleep in humans. We report a group study of seven subjects who maintained steady REM sleep during brain scanning and recalled dreams upon awakening. The results show that regional cerebral blood flow is positively correlated with REM sleep in pontine tegmentum, left thalamus, both amygdaloid complexes, anterior cingulate cortex and right parietal operculum. Negative correlations between regional cerebral blood flow and REM sleep are observed bilaterally, in a vast area of dorsolateral prefrontal cortex, in parietal cortex (supramarginal gyrus) as well as in posterior cingulate cortex and precuneus. Given the role of the amygdaloid complexes in the acquisition of emotionally influenced memories, the pattern of activation in the amygdala and the cortical areas provides a biological basis for the processing of some types of memory during REM sleep.

1,080 citations

Journal ArticleDOI
28 Oct 2004-Neuron
TL;DR: It is shown that, in humans, hippocampal areas that are activated during route learning in a virtual town are likewise activated during subsequent slow wave sleep, and that the amount of hippocampal activity expressed during slow waveSleep positively correlates with the improvement of performance in route retrieval on the next day.

727 citations

Journal ArticleDOI
TL;DR: Using positron emission tomography and regional cerebral blood flow measurements, it is shown that waking experience influences regional brain activity during subsequent sleep and supports the hypothesis that memory traces are processed during REM sleep in humans.
Abstract: The function of rapid-eye-movement (REM) sleep is still unknown. One prevailing hypothesis suggests that REM sleep is important in processing memory traces. Here, using positron emission tomography (PET) and regional cerebral blood flow measurements, we show that waking experience influences regional brain activity during subsequent sleep. Several brain areas activated during the execution of a serial reaction time task during wakefulness were significantly more active during REM sleep in subjects previously trained on the task than in non-trained subjects. These results support the hypothesis that memory traces are processed during REM sleep in humans.

706 citations

Journal ArticleDOI
TL;DR: The results show that rCBF is decreased more in some cortical areas (especially in orbitofrontal cortex) than in the rest of the cortex, and it is hypothesize that cellular processes taking place during SWS might be modulated differently in these regions.
Abstract: The distribution of regional cerebral blood flow (rCBF) was estimated during sleep and wakefulness by using H215O positron emission tomography (PET) and statistical parametric mapping. A group analysis on 11 good sleepers (8 with steady slow wave sleep, SWS) showed a significant negative correlation between the occurrence of SWS and rCBF in dorsal pons and mesencephalon, thalami, basal ganglia, basal forebrain/hypothalamus, orbitofrontal cortex, anterior cingulate cortex, precuneus, and, on the right side, in a region that follows the medial aspect of the temporal lobe. Given the known decrease in global cerebral blood flow levels during SWS, these negative correlations suggest that rCBF is decreased significantly more in these cerebral areas than in the rest of the brain. The marked rCBF decreases in the pons, mesencephalon, thalamic nuclei, and basal forebrain reflect their close implication in the generation of SWS rhythms. The influence of these rhythms on the telencephalon usually are thought to be global and homogeneous. In contrast, our results show that rCBF is decreased more in some cortical areas (especially in orbitofrontal cortex) than in the rest of the cortex. We hypothesize that cellular processes taking place during SWS might be modulated differently in these regions. Given the functions of the ventromedial frontal areas, we surmise that SWS might be particularly critical for the adaptation of behavior to environmental pressures. This hypothesis is supported indirectly by results of sleep deprivation experiments.

477 citations

Journal ArticleDOI
TL;DR: The results support the hypothesis that REM sleep is deeply involved in the reprocessing and optimization of the high-order information contained in the material to be learned and provide the first experimental evidence for a link between behavioral performance and cerebral reactivation during REM sleep.

302 citations


Cited by
More filters
Journal ArticleDOI
01 Mar 2006-Brain
TL;DR: A useful conceptual framework is provided for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated, and activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus.
Abstract: Functional neuroimaging studies have started unravelling unexpected functional attributes for the posteromedial portion of the parietal lobe, the precuneus. This cortical area has traditionally received little attention, mainly because of its hidden location and the virtual absence of focal lesion studies. However, recent functional imaging findings in healthy subjects suggest a central role for the precuneus in a wide spectrum of highly integrated tasks, including visuo-spatial imagery, episodic memory retrieval and self-processing operations, namely first-person perspective taking and an experience of agency. Furthermore, precuneus and surrounding posteromedial areas are amongst the brain structures displaying the highest resting metabolic rates (hot spots) and are characterized by transient decreases in the tonic activity during engagement in non-self-referential goal-directed actions (default mode of brain function). Therefore, it has recently been proposed that precuneus is involved in the interwoven network of the neural correlates of self-consciousness, engaged in self-related mental representations during rest. This hypothesis is consistent with the selective hypometabolism in the posteromedial cortex reported in a wide range of altered conscious states, such as sleep, drug-induced anaesthesia and vegetative states. This review summarizes the current knowledge about the macroscopic and microscopic anatomy of precuneus, together with its wide-spread connectivity with both cortical and subcortical structures, as shown by connectional and neurophysiological findings in non-human primates, and links these notions with the multifaceted spectrum of its behavioural correlates. By means of a critical analysis of precuneus activation patterns in response to different mental tasks, this paper provides a useful conceptual framework for matching the functional imaging findings with the specific role(s) played by this structure in the higher-order cognitive functions in which it has been implicated. Specifically, activation patterns appear to converge with anatomical and connectivity data in providing preliminary evidence for a functional subdivision within the precuneus into an anterior region, involved in self-centred mental imagery strategies, and a posterior region, subserving successful episodic memory retrieval.

4,342 citations

Journal ArticleDOI
TL;DR: Sleep has been identified as a state that optimizes the consolidation of newly acquired information in memory, depending on the specific conditions of learning and the timing of sleep, through specific patterns of neuromodulatory activity and electric field potential oscillations.
Abstract: Sleep improves the consolidation of both declarative and non-declarative memories. Diekelmann and Born discuss the potential mechanisms through which slow wave sleep and rapid eye movement sleep support system and synaptic consolidation. Sleep has been identified as a state that optimizes the consolidation of newly acquired information in memory, depending on the specific conditions of learning and the timing of sleep. Consolidation during sleep promotes both quantitative and qualitative changes of memory representations. Through specific patterns of neuromodulatory activity and electric field potential oscillations, slow-wave sleep (SWS) and rapid eye movement (REM) sleep support system consolidation and synaptic consolidation, respectively. During SWS, slow oscillations, spindles and ripples — at minimum cholinergic activity — coordinate the re-activation and redistribution of hippocampus-dependent memories to neocortical sites, whereas during REM sleep, local increases in plasticity-related immediate-early gene activity — at high cholinergic and theta activity — might favour the subsequent synaptic consolidation of memories in the cortex.

2,983 citations

Journal ArticleDOI
TL;DR: This review aims to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings.
Abstract: Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.

1,964 citations

Journal ArticleDOI
TL;DR: This paper reviews a novel hypothesis about the functions of slow wave sleep-the synaptic homeostasis hypothesis, which accounts for a large number of experimental facts, makes several specific predictions, and has implications for both sleep and mood disorders.

1,864 citations