scispace - formally typeset
Search or ask a question
Author

Joel Pfeffer

Bio: Joel Pfeffer is an academic researcher from Liverpool John Moores University. The author has contributed to research in topics: Galaxy & Globular cluster. The author has an hindex of 20, co-authored 39 publications receiving 1419 citations. Previous affiliations of Joel Pfeffer include University of Western Australia & European Southern Observatory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the formation and assembly history of the Milky Way (MW) was reconstructed from the age-metallicity distribution of 96 Galactic globular clusters (GCs) to infer the merger tree of the MW.
Abstract: We use the age–metallicity distribution of 96 Galactic globular clusters (GCs) to infer the formation and assembly history of the Milky Way (MW), culminating in the reconstruction of its merger tree. Based on a quantitative comparison of the Galactic GC population to the 25 cosmological zoom-in simulations of MW-mass galaxies in the E-MOSAICS project, which self-consistently model the formation and evolution of GC populations in a cosmological context, we find that the MW assembled quickly for its mass, reaching {25, 50} per cent of its present-day halo mass already at z = {3, 1.5} and half of its present-day stellar mass at z = 1.2. We reconstruct the MW’s merger tree from its GC age–metallicity distribution, inferring the number of mergers as a function of mass ratio and redshift. These statistics place the MW’s assembly rate among the 72th–94th percentile of the E-MOSAICS galaxies, whereas its integrated properties (e.g. number of mergers, halo concentration) match the median of the simulations. We conclude that the MW has experienced no major mergers (mass ratios >1:4) since z ∼ 4, sharpening previous limits of z ∼ 2. We identify three massive satellite progenitors and constrain their mass growth and enrichment histories. Two are proposed to correspond to Sagittarius (a few 108 M⊙) and the GCs formerly associated with Canis Major (⁠∼109M⊙). The third satellite has no known associated relic and was likely accreted between z = 0.6 and 1.3. We name this enigmatic galaxy Kraken and propose that it is the most massive satellite (⁠M ∗ ∼2×10 9 M ⊙) ever accreted by the MW. We predict that ∼40 per cent of the Galactic GCs formed ex situ (in galaxies with masses M* = 2 × 107–2×109M⊙), with 6 ± 1 being former nuclear clusters.

269 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that 2/3 of nearby halo stars have high orbital eccentricities and abundance patterns typical of massive Milky Way dwarf galaxy satellites today, characterised by relatively low [Fe/H], [Mg/Fe], [Al/Fe, and [Ni/Fe] abundances.
Abstract: Recent work indicates that the nearby Galactic halo is dominated by the debris from a major accretion event. We confirm that result from an analysis of APOGEE-DR14 element abundances and $\textit{Gaia}$-DR2 kinematics of halo stars. We show that $\sim$2/3 of nearby halo stars have high orbital eccentricities ($e \gtrsim 0.8$), and abundance patterns typical of massive Milky Way dwarf galaxy satellites today, characterised by relatively low [Fe/H], [Mg/Fe], [Al/Fe], and [Ni/Fe]. The trend followed by high $e$ stars in the [Mg/Fe]-[Fe/H] plane shows a change of slope at [Fe/H]$\sim-1.3$, which is also typical of stellar populations from relatively massive dwarf galaxies. Low $e$ stars exhibit no such change of slope within the observed [Fe/H] range and show slightly higher abundances of Mg, Al and Ni. Unlike their low $e$ counterparts, high $e$ stars show slightly retrograde motion, make higher vertical excursions and reach larger apocentre radii. By comparing the position in [Mg/Fe]-[Fe/H] space of high $e$ stars with those of accreted galaxies from the EAGLE suite of cosmological simulations we constrain the mass of the accreted satellite to be in the range $10^{8.5}\lesssim M_*\lesssim 10^{9}\mathrm{M_\odot}$. We show that the median orbital eccentricities of debris are largely unchanged since merger time, implying that this accretion event likely happened at $z\lesssim1.5$. The exact nature of the low $e$ population is unclear, but we hypothesise that it is a combination of $\textit{in situ}$ star formation, high $|z|$ disc stars, lower mass accretion events, and contamination by the low $e$ tail of the high $e$ population. Finally, our results imply that the accretion history of the Milky Way was quite unusual.

215 citations

Journal ArticleDOI
TL;DR: In this article, the authors introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project, which incorporates models describing the formation, evolution, and disruption of star clusters into the eagle galaxy formation simulations, enabling the examination of the co-evolution of star cluster and their host galaxies in a fully cosmological context.
Abstract: We introduce the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) project. E-MOSAICS incorporates models describing the formation, evolution, and disruption of star clusters into the EAGLE galaxy formation simulations, enabling the examination of the co-evolution of star clusters and their host galaxies in a fully cosmological context. A fraction of the star formation rate of dense gas is assumed to yield a cluster population; this fraction and the population’s initial properties are governed by the physical properties of the natal gas. The subsequent evolution and disruption of the entire cluster population are followed accounting for two-body relaxation, stellar evolution, and gravitational shocks induced by the local tidal field. This introductory paper presents a detailed description of the model and initial results from a suite of 10 simulations of ∼L galaxies with disc-like morphologies atz = 0. The simulations broadly reproduce key observed characteristics of young star clusters and globular clusters (GCs), without invoking separate formation mechanisms for each population. The simulated GCs are the surviving population of massive clusters formed at early epochs (z 1–2), when the characteristic pressures and surface densities of star-forming gas were significantly higher than observed in local galaxies. We examine the influence of the star formation and assembly histories of galaxies on their cluster populations, finding that (at similar present-day mass) earlier-forming galaxies foster a more massive and disruption-resilient cluster population, while galaxies with late mergers are capable of forming massive clusters even at late cosmic epochs. We find that the phenomenological treatment of interstellar gas in EAGLE precludes the accurate modelling of cluster disruption in low-density environments, but infer that simulations incorporating an explicitly modelled cold interstellar gas phase will overcome this shortcoming.

195 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use a GPU enabled version of the particle-mesh code superbox to study the possibility of turning nucleated dwarf galaxies into UCDs by tidally stripping them in a Virgo-like galaxy cluster.
Abstract: Ultra Compact Dwarf Galaxies (UCDs) and dwarf galaxy nuclei have many common properties, such as internal velocity dispersions and colour-magnitude trends, suggesting tidally stripped dwarf galaxies as a possible UCD origin. However, UCDs typically have sizes more than twice as large as nuclei at the same luminosity. We use a GPUenabled version of the particle-mesh code superbox to study the possibility of turning nucleated dwarf galaxies into UCDs by tidally stripping them in a Virgo-like galaxy cluster. We find that motion in spherical potentials, where close passages happen many times, leads to the formation of compact (rh . 20 pc) star clusters/UCDs. In contrast, orbital motion where close passages happen only once or twice leads to the formation of extended objects which are large enough to account for the full range of observed UCD sizes. For such motion, we find that dwarf galaxies need close pericentre passages with distances less than 10 kpc to undergo strong enough stripping so that UCD formation is possible. As tidal stripping produces objects with similar properties to UCDs, and our estimates suggest dwarf galaxies have been destroyed in sufficient numbers to explain the observed number of UCDs in M87, we consider tidal stripping to be a likely origin of UCDs. However, comparison with cosmological simulations is needed to determine if the number and spatial distribution of UCDs formed by tidal stripping matches the observations of UCDs in galaxy clusters.

140 citations

Journal ArticleDOI
TL;DR: In this article, an artificial neural network was trained on the E-MOSAICS cosmological simulations of the co-formation and co-evolution of GCs and their host galaxies.
Abstract: Globular clusters (GCs) formed when the Milky Way experienced a phase of rapid assembly. We use the wealth of information contained in the Galactic GC population to quantify the properties of the satellite galaxies from which the Milky Way assembled. To achieve this, we train an artificial neural network on the E-MOSAICS cosmological simulations of the co-formation and co-evolution of GCs and their host galaxies. The network uses the ages, metallicities, and orbital properties of GCs that formed in the same progenitor galaxies to predict the stellar masses and accretion redshifts of these progenitors. We apply the network to Galactic GCs associated with five progenitors: {\it Gaia}-Enceladus, the Helmi streams, Sequoia, Sagittarius, and the recently discovered, `low-energy' GCs, which provide an excellent match to the predicted properties of the enigmatic galaxy `Kraken'. The five galaxies cover a narrow stellar mass range [$M_\star=(0.6{-}4.6)\times10^8~{\rm M}_\odot$], but have widely different accretion redshifts ($z_{\rm acc}=0.57{-}2.65$). All accretion events represent minor mergers, but Kraken likely represents the most major merger ever experienced by the Milky Way, with stellar and virial mass ratios of $r_{M_\star}=1$:$31^{+34}_{-16}$ and $r_{M_{\rm h}}=1$:$7^{+4}_{-2}$, respectively. The progenitors match the $z=0$ relation between GC number and halo virial mass, but have elevated specific frequencies, suggesting an evolution with redshift. Even though these progenitors likely were the Milky Way's most massive accretion events, they contributed a total mass of only $\log{(M_{\rm \star,tot}/{\rm M}_\odot)}=9.0\pm0.1$, similar to the stellar halo. This implies that the Milky Way grew its stellar mass mostly by in-situ star formation. We conclude by organising these accretion events into the most detailed reconstruction to date of the Milky Way's merger tree.

137 citations


Cited by
More filters
01 Apr 1987

511 citations

Journal ArticleDOI
TL;DR: In this paper, star-to-star variations in specific elements (e.g., He, C, N, O, Na, Al) that bear the hallmark of high-temperature H-burning are discussed.
Abstract: Globular clusters (GCs) exhibit star-to-star variations in specific elements (e.g., He, C, N, O, Na, Al) that bear the hallmark of high-temperature H-burning. These abundance variations can be obse...

419 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived the mean proper motions and space velocities of 154 Galactic globular clusters and the velocity dispersion profiles of 141 Globular clusters based on a combination of Gaia DR2 proper motions with ground-based line-of-sight velocity.
Abstract: We have derived the mean proper motions and space velocities of 154 Galactic globular clusters and the velocity dispersion profiles of 141 globular clusters based on a combination of Gaia DR2 proper motions with ground-based line-of-sight velocities. Combining the velocity dispersion profiles derived here with new measurements of the internal mass functions allows us to model the internal kinematics of 144 clusters, more than 90 per cent of the currently known Galactic globular cluster population. We also derive the initial cluster masses by calculating the cluster orbits backwards in time applying suitable recipes to account for mass-loss and dynamical friction. We find a correlation between the stellar mass function of a globular cluster and the amount of mass lost from the cluster, pointing to dynamical evolution as one of the mechanisms shaping the mass function of stars in clusters. The mass functions also show strong evidence that globular clusters started with a bottom-light initial mass function. Our simulations show that the currently surviving globular cluster population has lost about 80 per cent of its mass since the time of formation. If globular clusters started from a lognormal mass function, we estimate that the Milky Way contained about 500 globular clusters initially, with a combined mass of about 2.5 × 10 M. For a power-law initial mass function, the initial mass in globular clusters could have been a factor of three higher.

363 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided dynamical and chemical evidence for a second substantial accretion episode, distinct from the Gaia Sausage, which is the major accretion event that built the stellar halo of the Milky Way galaxy.
Abstract: The Gaia Sausage is the major accretion event that built the stellar halo of the Milky Way galaxy. Here, we provide dynamical and chemical evidence for a second substantial accretion episode, distinct from the Gaia Sausage. The Sequoia Event provided the bulk of the high energy retrograde stars in the stellar halo, as well as the recently discovered globular cluster FSR 1758. There are up to 6 further globular clusters, including $\omega$~Centauri, as well as many of the retrograde substructures in Myeong et al. (2018), associated with the progenitor dwarf galaxy, named the Sequoia. The stellar mass in the Sequoia galaxy is $\sim 5 \times 10^{7} M_\odot$, whilst the total mass is $\sim 10^{10} M_\odot$, as judged from abundance matching or from the total sum of the globular cluster mass. Although clearly less massive than the Sausage, the Sequoia has a distinct chemo-dynamical signature. The strongly retrograde Sequoia stars have a typical eccentricity of $\sim0.6$, whereas the Sausage stars have no clear net rotation and move on predominantly radial orbits. On average, the Sequoia stars have lower metallicity by $\sim 0.3$ dex and higher abundance ratios as compared to the Sausage. We conjecture that the Sausage and the Sequoia galaxies may have been associated and accreted at a comparable epoch.

344 citations

Journal ArticleDOI
TL;DR: In this paper, an end-to-end, two-phase model for the origin of globular clusters (GCs) is presented, where populations of stellar clusters form in the high-pressure discs of high-redshift ($z>2$) galaxies (a rapid-disruption phase due to tidal perturbations from the dense interstellar medium), after which the galaxy mergers associated with hierarchical galaxy formation redistribute the surviving, massive clusters into the galaxy haloes, where they remain until the present day.
Abstract: We present an end-to-end, two-phase model for the origin of globular clusters (GCs). In the model, populations of stellar clusters form in the high-pressure discs of high-redshift ($z>2$) galaxies (a rapid-disruption phase due to tidal perturbations from the dense interstellar medium), after which the galaxy mergers associated with hierarchical galaxy formation redistribute the surviving, massive clusters into the galaxy haloes, where they remain until the present day (a slow-disruption phase due to tidal evaporation). The high galaxy merger rates of $z>2$ galaxies allow these clusters to be `liberated' into the galaxy haloes before they are disrupted within the high-density discs. This physically-motivated toy model is the first to include the rapid-disruption phase, which is shown to be essential for simultaneously reproducing the wide variety of properties of observed GC systems, such as their universal characteristic mass-scale, the dependence of the specific frequency on metallicity and galaxy mass, the GC system mass-halo mass relation, the constant number of GCs per unit supermassive black hole mass, and the colour bimodality of GC systems. The model predicts that most of these observables were already in place at $z=1$-$2$, although under rare circumstances GCs may still form in present-day galaxies. In addition, the model provides important constraints on models for multiple stellar populations in GCs by putting limits on initial GC masses and the amount of pristine gas accretion. The paper is concluded with a discussion of these and several other predictions and implications, as well as the main open questions in the field.

302 citations