scispace - formally typeset
Search or ask a question
Author

Joel Ryan

Bio: Joel Ryan is an academic researcher from McGill University. The author has contributed to research in topics: Metadata & Software. The author has an hindex of 1, co-authored 4 publications receiving 5 citations.

Papers
More filters
Posted ContentDOI
31 May 2021-bioRxiv
TL;DR: Micro-Meta App as mentioned in this paper is an open-source software designed to facilitate the extraction and collection of relevant microscopy metadata, which can be used for documenting imaging experiments and shared with the community.
Abstract: For the information content of microscopy images to be appropriately interpreted, reproduced, and meet FAIR (Findable Accessible Interoperable and Reusable) principles, they should be accompanied by detailed descriptions of microscope hardware, image acquisition settings, image pixel and dimensional structure, and instrument performance. Nonetheless, the thorough documentation of imaging experiments is significantly impaired by the lack of community-sanctioned easy-to-use software tools to facilitate the extraction and collection of relevant microscopy metadata. Here we present Micro-Meta App, an intuitive open-source software designed to tackle these issues that was developed in the context of nascent global bioimaging community organizations, including BioImaging North America (BINA) and QUAlity Assessment and REProducibility in Light Microscopy (QUAREP-LiMi), whose goal is to improve reproducibility, data quality and sharing value for imaging experiments. The App provides a user-friendly interface for building comprehensive descriptions of the conditions utilized to produce individual microscopy datasets as specified by the recently proposed 4DN-BINA-OME tiered-system of Microscopy Metadata model. To achieve this goal the App provides a visual guide for a microscope-user to: 1) interactively build diagrammatic representations of hardware configurations of given microscopes that can be easily reused and shared with colleagues needing to document similar instruments. 2) Automatically extracts relevant metadata from image files and facilitates the collection of missing image acquisition settings and calibration metrics associated with a given experiment. 3) Output all collected Microscopy Metadata to interoperable files that can be used for documenting imaging experiments and shared with the community. In addition to significantly lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training users that have limited knowledge of the intricacies of light microscopy experiments. To ensure wide-adoption by microscope-users with different needs Micro-Meta App closely interoperates with MethodsJ2 and OMERO.mde, two complementary tools described in parallel manuscripts.

4 citations

Posted ContentDOI
24 Jun 2021-bioRxiv
TL;DR: MethodsJ2 as discussed by the authors is an ImageJ/Fiji based software tool that gathers metadata and automatically generates text for the methods section of publications to reproduce microscopy experiments, interpret results and share images.
Abstract: Proper reporting of metadata is essential to reproduce microscopy experiments, interpret results and share images. Experimental scientists can report details about sample preparation and imaging conditions while imaging scientists have the expertise required to collect and report the image acquisition, hardware and software metadata information. MethodsJ2 is an ImageJ/Fiji based software tool that gathers metadata and automatically generates text for the methods section of publications.

1 citations


Cited by
More filters
Posted ContentDOI
26 Apr 2021-bioRxiv
TL;DR: The 4D Nucleome Initiative (4DN) and the BioImaging North America (BINA)-OME (NBO namespace) as mentioned in this paper have proposed a set of metadata specifications for light microscopy data that scale with experimental intent and with the complexity of the instrumentation and analytical requirements.
Abstract: 1 - ABSTRACT Digital light microscopy provides powerful tools for quantitatively probing the real-time dynamics of subcellular structures. While the power of modern microscopy techniques is undeniable, rigorous record-keeping and quality control are required to ensure that imaging data may be properly interpreted (quality), reproduced (reproducibility), and used to extract reliable information and scientific knowledge which can be shared for further analysis (value). Keeping notes on microscopy experiments and quality control procedures ought to be straightforward, as the microscope is a machine whose components are defined and the performance measurable. Nevertheless, to this date, no universally adopted community-driven specifications exist that delineate the required information about the microscope hardware and acquisition settings (i.e., microscopy “data provenance” metadata) and the minimally accepted calibration metrics (i.e., microscopy quality control metadata) that should be automatically recorded by both commercial microscope manufacturers and customized microscope developers. In the absence of agreed guidelines, it is inherently difficult for scientists to create comprehensive records of imaging experiments and ensure the quality of resulting image data or for manufacturers to incorporate standardized reporting and performance metrics. To add to the confusion, microscopy experiments vary greatly in aim and complexity, ranging from purely descriptive work to complex, quantitative and even sub-resolution studies that require more detailed reporting and quality control measures. To solve this problem, the 4D Nucleome Initiative (4DN) (1, 2) Imaging Standards Working Group (IWG), working in conjunction with the BioImaging North America (BINA) Quality Control and Data Management Working Group (QC-DM-WG) (3), here propose light Microscopy Metadata specifications that scale with experimental intent and with the complexity of the instrumentation and analytical requirements. They consist of a revision of the Core of the Open Microscopy Environment (OME) Data Model, which forms the basis for the widely adopted Bio-Formats library (4–6), accompanied by a suite of three extensions, each with three tiers, allowing the classification of imaging experiments into levels of increasing imaging and analytical complexity (7, 8). Hence these specifications not only provide an OME-based comprehensive set of metadata elements that should be recorded, but they also specify which subset of the full list should be recorded for a given experimental tier. In order to evaluate the extent of community interest, an extensive outreach effort was conducted to present the proposed metadata specifications to members of several core-facilities and international bioimaging initiatives including the European Light Microscopy Initiative (ELMI), Global BioImaging (GBI), and European Molecular Biology Laboratory (EMBL) - European Bioinformatics Institute (EBI). Consequently, close ties were established between our endeavour and the undertakings of the recently established QUAlity Assessment and REProducibility for Instruments and Images in Light Microscopy global community initiative (9). As a result this flexible 4DN-BINA-OME (NBO namespace) framework (7, 8) represents a turning point towards achieving community-driven Microscopy Metadata standards that will increase data fidelity, improve repeatability and reproducibility, ease future analysis and facilitate the verifiable comparison of different datasets, experimental setups, and assays, and it demonstrates the method for future extensions. Such universally accepted microscopy standards would serve a similar purpose as the Encode guidelines successfully adopted by the genomic community (10, 11). The intention of this proposal is therefore to encourage participation, critiques and contributions from the entire imaging community and all stakeholders, including research and imaging scientists, facility personnel, instrument manufacturers, software developers, standards organizations, scientific publishers, and funders.

12 citations

Journal ArticleDOI
TL;DR: This review aims to summarize the key points that need to be considered when setting up and analyzing a live-cell imaging experiment and puts a particular focus on yeast, but many of the concepts discussed are applicable also to other organisms.
Abstract: Live-cell microscopy is a powerful tool that can reveal cellular behavior as well as the underlying molecular processes. A key advantage of microscopy is that by visualizing biological processes, it can provide direct insights. Nevertheless, live-cell imaging can be technically challenging and prone to artifacts. For a successful experiment, many careful decisions are required at all steps from hardware selection to downstream image analysis. Facing these questions can be particularly intimidating due to the requirement for expertise in multiple disciplines, ranging from optics, biophysics, and programming to cell biology. In this review, we aim to summarize the key points that need to be considered when setting up and analyzing a live-cell imaging experiment. While we put a particular focus on yeast, many of the concepts discussed are applicable also to other organisms. In addition, we discuss reporting and data sharing strategies that we think are critical to improve reproducibility in the field.

10 citations

Journal ArticleDOI
TL;DR: An extension to BIDS for microscopy imaging data is presented, which includes comprehensible metadata definitions for hardware, image acquisition, and sample properties, to facilitate future harmonization efforts in the context of multi-modal, multi-scale imaging such as the characterization of tissue microstructure with qMRI.
Abstract: The Brain Imaging Data Structure (BIDS) is a specification for organizing, sharing, and archiving neuroimaging data and metadata in a reusable way. First developed for magnetic resonance imaging (MRI) datasets, the community-led specification evolved rapidly to include other modalities such as magnetoencephalography, positron emission tomography, and quantitative MRI (qMRI). In this work, we present an extension to BIDS for microscopy imaging data, along with example datasets. Microscopy-BIDS supports common imaging methods, including 2D/3D, ex/in vivo, micro-CT, and optical and electron microscopy. Microscopy-BIDS also includes comprehensible metadata definitions for hardware, image acquisition, and sample properties. This extension will facilitate future harmonization efforts in the context of multi-modal, multi-scale imaging such as the characterization of tissue microstructure with qMRI.

10 citations

Journal ArticleDOI
TL;DR: The importance and value of bioimaging RDM and data sharing was highlighted in a survey conducted by as discussed by the authors , where the authors created a questionnaire tailored to relevant topics of the bio-imaging community, including specific questions on bioimages methods and bioimage analysis, as well as more general questions on RDM principles and tools.
Abstract: Background Knowing the needs of the bioimaging community with respect to research data management (RDM) is essential for identifying measures that enable adoption of the FAIR (findable, accessible, interoperable, reusable) principles for microscopy and bioimage analysis data across disciplines. As an initiative within Germany's National Research Data Infrastructure, we conducted this community survey in summer 2021 to assess the state of the art of bioimaging RDM and the community needs. Methods An online survey was conducted with a mixed question-type design. We created a questionnaire tailored to relevant topics of the bioimaging community, including specific questions on bioimaging methods and bioimage analysis, as well as more general questions on RDM principles and tools. 203 survey entries were included in the analysis covering the perspectives from various life and biomedical science disciplines and from participants at different career levels. Results The results highlight the importance and value of bioimaging RDM and data sharing. However, the practical implementation of FAIR practices is impeded by technical hurdles, lack of knowledge, and insecurity about the legal aspects of data sharing. The survey participants request metadata guidelines and annotation tools and endorse the usage of image data management platforms. At present, OMERO (Open Microscopy Environment Remote Objects) is the best known and most widely used platform. Most respondents rely on image processing and analysis, which they regard as the most time-consuming step of the bioimage data workflow. While knowledge about and implementation of electronic lab notebooks and data management plans is limited, respondents acknowledge their potential value for data handling and publication. Conclusions The bioimaging community acknowledges and endorses the value of RDM and data sharing. Still, there is a need for information, guidance, and standardization to foster the adoption of FAIR data handling. This survey may help inspiring targeted measures to close this gap.

2 citations