scispace - formally typeset
Search or ask a question
Author

Joerg Hoheisel

Bio: Joerg Hoheisel is an academic researcher from German Cancer Research Center. The author has contributed to research in topics: DNA methylation & Cancer. The author has an hindex of 9, co-authored 14 publications receiving 624 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In a multicenter study, the expression profiles of 863 microRNAs were determined by array analysis of 454 blood samples from human individuals with different cancers or noncancer diseases, and this 'miRNome' was validated by quantitative real-time PCR.
Abstract: In a multicenter study, we determined the expression profiles of 863 microRNAs by array analysis of 454 blood samples from human individuals with different cancers or noncancer diseases, and validated this 'miRNome' by quantitative real-time PCR. We detected consistently deregulated profiles for all tested diseases; pathway analysis confirmed disease association of the respective microRNAs. We observed significant correlations (P = 0.004) between the genomic location of disease-associated genetic variants and deregulated microRNAs.

347 citations

Journal ArticleDOI
TL;DR: A microfluidic primer extension assay (MPEA) for the detection of sncRNAs on highly flexible microfluidity microarrays which combines several beneficial parameters: it can effortless incorporate any new sequence information; it is sensitive enough to work with as little as 20ng of total RNA and has a high level of specificity.

90 citations

Journal ArticleDOI
TL;DR: The findings suggest a role for macrophage-inhibiting cytokine-1 (MIC-1) in coronary artery cardiovascular events and the pathophysiological contribution of TRL to the development of Atherosclerosis and the stability of atherosclerotic plaques may depend on the fatty acid composition ofTRL.
Abstract: Aims Postprandial triglyceride-rich lipoproteins (TRL) have a direct effect on vascular smooth muscle cells (SMC) and they increase the risk of atherogenesis. Here, we have tested the hypothesis that the different fatty acid composition of TRL is capable of differentially modifying gene expression in human coronary artery SMC (CASMC). In addition, the effect of TRL on cell proliferation and transcription factor activation was also evaluated. Methods and results TRL were prepared from plasma of healthy volunteers after the ingestion of meals enriched in refined olive oil (ROO), butter or a mixture of vegetable and fish oils (VEFO). We use cDNA microarrays to determine the genes differentially expressed in TRL-treated CASMC. Correspondence cluster analysis demonstrated that TRL-butter, -ROO and -VEFO provoked different transcriptional profiles in CASMC. Sixty-six genes were regulated by TRL-butter, 55 by –ROO, and 47 by -VEFO. The data revealed that TRL-butter predominantly activated genes involved in the regulation of cell proliferation and inflammation. Likewise, TRL-VEFO induced the expression of genes implicated in inflammation, while TRL-ROO promoted a less atherogenic gene profile. Conclusion The pathophysiological contribution of TRL to the development of atherosclerosis and the stability of atherosclerotic plaques may depend on the fatty acid composition of TRL. Our findings suggest a role for macrophage-inhibiting cytokine-1 (MIC-1) in coronary artery cardiovascular events.

77 citations

Journal ArticleDOI
26 Jun 2014-Oncogene
TL;DR: In this paper, the contribution of epigenetically silenced genes to the development of pancreatic ductal adenocarcinoma (PDAC) was determined, and enriched, highly methylated DNAs from PDACs, chronic pancreatitis (CP) and normal tissues using CpG island microarrays were analyzed.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is usually incurable. Contrary to genetic mechanisms involved in PDAC pathogenesis, epigenetic alterations are ill defined. Here, we determine the contribution of epigenetically silenced genes to the development of PDAC. We analyzed enriched, highly methylated DNAs from PDACs, chronic pancreatitis (CP) and normal tissues using CpG island microarrays and identified WNK2 as a prominent candidate tumor suppressor gene being downregulated early in PDAC development. WNK2 was further investigated in tissue microarrays, methylation analysis of early pancreatic intraepithelial neoplasia (PanIN), mouse models for PDAC and pancreatitis, re-expression studies after demethylation, and cell growth assays using WNK2 overexpression. Demethylation assays confirmed the link between methylation and expression. WNK2 hypermethylation was higher in tumor than in surrounding inflamed tissues and was observed in PanIN lesions as well as in a PDAC mouse model. WNK2 mRNA and protein expressions were lower in PDAC and CP compared with normal tissues both in patients and mouse models. Overexpression of WNK2 led to reduced cell growth, and WNK2 expression in tissues correlated negatively with pERK1/2 expression, a downstream target of WNK2 responsible for cell proliferation. Downregulation of WNK2 by promoter hypermethylation occurs early in PDAC pathogenesis and may support tumor cell growth via the ERK–MAPK pathway.

36 citations

Journal ArticleDOI
14 Aug 2014-Oncogene
TL;DR: Analyzing this particular molecule in more detail, it is shown that inhibition of SALL1 correlates with reduced levels of CDH1, an important contributor to epithelial-to-mesenchymal transition and cast new light on a gene that has been described to be relevant during embryogenesis, but not carcinogenesis.
Abstract: The gold standard for determining the tumorigenic potential of human cancer cells is a xenotransplantation into immunodeficient mice. Higher tumorigenicity of cells is associated with earlier tumor onset. Here, we used xenotransplantation to assess the tumorigenic potential of human breast cancer cells following RNA interference-mediated inhibition of over 5000 genes. We identify 16 candidate tumor suppressors, one of which is the zinc-finger transcription factor SALL1. Analyzing this particular molecule in more detail, we show that inhibition of SALL1 correlates with reduced levels of CDH1, an important contributor to epithelial-to-mesenchymal transition. Furthermore, SALL1 expression led to an increased migration and more than twice as many cells expressing a cancer stem cell signature. Also, SALL1 expression correlates with the survival of breast cancer patients. These findings cast new light on a gene that has previously been described to be relevant during embryogenesis, but not carcinogenesis.

34 citations


Cited by
More filters
01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal Article
TL;DR: In this paper, the coding exons of the family of 518 protein kinases were sequenced in 210 cancers of diverse histological types to explore the nature of the information that will be derived from cancer genome sequencing.
Abstract: AACR Centennial Conference: Translational Cancer Medicine-- Nov 4-8, 2007; Singapore PL02-05 All cancers are due to abnormalities in DNA. The availability of the human genome sequence has led to the proposal that resequencing of cancer genomes will reveal the full complement of somatic mutations and hence all the cancer genes. To explore the nature of the information that will be derived from cancer genome sequencing we have sequenced the coding exons of the family of 518 protein kinases, ~1.3Mb DNA per cancer sample, in 210 cancers of diverse histological types. Despite the screen being directed toward the coding regions of a gene family that has previously been strongly implicated in oncogenesis, the results indicate that the majority of somatic mutations detected are “passengers”. There is considerable variation in the number and pattern of these mutations between individual cancers, indicating substantial diversity of processes of molecular evolution between cancers. The imprints of exogenous mutagenic exposures, mutagenic treatment regimes and DNA repair defects can all be seen in the distinctive mutational signatures of individual cancers. This systematic mutation screen and others have previously yielded a number of cancer genes that are frequently mutated in one or more cancer types and which are now anticancer drug targets (for example BRAF , PIK3CA , and EGFR ). However, detailed analyses of the data from our screen additionally suggest that there exist a large number of additional “driver” mutations which are distributed across a substantial number of genes. It therefore appears that cells may be able to utilise mutations in a large repertoire of potential cancer genes to acquire the neoplastic phenotype. However, many of these genes are employed only infrequently. These findings may have implications for future anticancer drug development.

2,737 citations

Book ChapterDOI
TL;DR: A critical overview of miRNA dysregulation in cancer is provided, first discussing the methods currently available for studying the role of miRNAs in cancer and then reviewing miRNA genomic organization, biogenesis, and mechanism of target recognition.
Abstract: Mature microRNAs (miRNAs) are single-stranded RNA molecules of 20–23-nucleotide (nt) length that control gene expression in many cellular processes. These molecules typically reduce the translation and stability of mRNAs, including those of genes that mediate processes in tumorigenesis, such as inflammation, cell cycle regulation, stress response, differentiation, apoptosis, and invasion. miRNA targeting is initiated through specific base-pairing interactions between the 5′ end (“seed” region) of the miRNA and sites within coding and untranslated regions (UTRs) of mRNAs; target sites in the 3′ UTR lead to more effective mRNA destabilization. Since miRNAs frequently target hundreds of mRNAs, miRNA regulatory pathways are complex. To provide a critical overview of miRNA dysregulation in cancer, we first discuss the methods currently available for studying the role of miRNAs in cancer and then review miRNA genomic organization, biogenesis, and mechanism of target recognition, examining how these processes are altered in tumorigenesis. Given the critical role miRNAs play in tumorigenesis processes and their disease specific expression, they hold potential as therapeutic targets and novel biomarkers.

680 citations

Journal ArticleDOI
TL;DR: The duplex-specific nuclease is employed to recycle the process of target-assisted digestion of Taqman probes, resulting in a significant fluorescence signal amplification through which one target molecule cleaves thousands of probe molecules, and the efficiency of this DSNSA strategy for rapid direct quantification of multiple miRNAs in biological samples is demonstrated.
Abstract: Traditional molecular beacons, widely applied for detection of nucleic acids, have an intrinsic limitation on sensitivity, as one target molecule converts only one beacon molecule to its fluorescen...

477 citations

Journal ArticleDOI
TL;DR: In this paper, microRNAs (miRNAs) are used as biomarkers for early detection of the disease and identification of individuals at risk of developing complications, which would greatly improve the care of these patients.
Abstract: Diabetes mellitus is characterized by insulin secretion from pancreatic β cells that is insufficient to maintain blood glucose homeostasis. Autoimmune destruction of β cells results in type 1 diabetes mellitus, whereas conditions that reduce insulin sensitivity and negatively affect β-cell activities result in type 2 diabetes mellitus. Without proper management, patients with diabetes mellitus develop serious complications that reduce their quality of life and life expectancy. Biomarkers for early detection of the disease and identification of individuals at risk of developing complications would greatly improve the care of these patients. Small non-coding RNAs called microRNAs (miRNAs) control gene expression and participate in many physiopathological processes. Hundreds of miRNAs are actively or passively released in the circulation and can be used to evaluate health status and disease progression. Both type 1 diabetes mellitus and type 2 diabetes mellitus are associated with distinct modifications in the profile of miRNAs in the blood, which are sometimes detectable several years before the disease manifests. Moreover, circulating levels of certain miRNAs seem to be predictive of long-term complications. Technical and scientific obstacles still exist that need to be overcome, but circulating miRNAs might soon become part of the diagnostic arsenal to identify individuals at risk of developing diabetes mellitus and its devastating complications.

476 citations