scispace - formally typeset
Search or ask a question
Author

Johan M. Thijssen

Bio: Johan M. Thijssen is an academic researcher from Radboud University Nijmegen. The author has contributed to research in topics: Segmentation & Image segmentation. The author has an hindex of 36, co-authored 148 publications receiving 3640 citations. Previous affiliations of Johan M. Thijssen include Radboud University Nijmegen Medical Centre & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: A coarse-to-fine approach is favored using RF data on a fine scale, using envelope data for window sizes exceeding the theoretical upper bound for strain estimation and the use of 2D parabolic interpolation to obtain subsample displacement estimates.
Abstract: In elastography, several methods for 2-D strain imaging have been introduced, based on both raw frequency (RF) data and speckle-tracking. Although the precision and lesion detectability of axial strain imaging in terms of elastographic signal-to-noise ratio (SNRe) and elastographic contrast-to-noise ratio (CNRe) have been reported extensively, analysis of lateral precision is still lacking. In this paper, the performance of different 2-D correlation RF- and envelope-based strain estimation methods was evaluated using simulation data and phantom experiments. Besides window size and interpolation methods for subsample displacement estimation, the influence of recorrelation techniques was examined. Precision and contrast of the measured displacements and strains were assessed using the difference between modeled and measured displacements, SNRe and CNRe. In general, a 2-D coarse-to-fine displacement estimation method is favored, using envelope data for window sizes exceeding the theoretical upper bound for strain estimation. Using 2-D windows of RF data resulted in better displacement estimates for both the axial and lateral direction than 1-D RF-based or envelope-based techniques. Obtaining subsample lateral displacement estimates by fitting a predefined shape through the cross-correlation function (CCF) yielded results similar to those obtained with up-sampling of RF data in the lateral direction. Using a CCF model was favored because of the decreased computation time. Local aligning and stretching of the windows (recorrelation) resulted in an increase of 2-17 and 6-7 dB in SNRe for axial and lateral strain estimates, respectively, over a range of strains (0.5 to 5.0%). For a simulated inhomogeneous phantom (2.0% applied strain), the measured axial and lateral SNRes were 29.2 and 20.2 dB, whereas the CNRes were 50.2 dB and 31.5 dB, respectively. For the experimental data, lower SNRe (axial: 28.5 dB; lateral: 17.5 dB) and CNRe (axial: 39.3 dB; lateral: 31 dB) were found. In conclusion, a coarse-to-fine approach is favored using RF data on a fine scale. The use of 2D parabolic interpolation is favored to obtain subsample displacement estimates. Recorrelation techniques, such as local aligning and stretching, increase SNRe and CNRe in both directions.

221 citations

Journal ArticleDOI
TL;DR: In this article, B-mode echograms were simulated by employing the impulse response method in transmission and reception using a discrete scatterer tissue model, with and without attenuation.

208 citations

Journal ArticleDOI
TL;DR: The effects of spatial, fixed and adaptive, filtering, as well as, of grey scale encoding on the detection of lesions are analytically described and illustrated with representative images.

179 citations

Journal ArticleDOI
TL;DR: The mutual correlations between the estimated parameters were used to preselect parameters contributing independent information, and which can subsequently be used in a discriminant analysis to differentiate between the various diseased conditions.
Abstract: A study was performed to find and test quantitative methods of analysing echographic signals for the differentiation of diffuse liver diseases. An on-line data acquisition system was used to acquire radiofrequency (RF) echo signals from volunteers and patients. Several methods to estimate the frequency-dependent attenuation coefficient were evaluated, in which a correction for the frequency and depth-dependent diffraction and focusing effects caused by the sound beam was applied. Using the estimated value of the attenuation coefficient the RF signals themselves were corrected to remove the depth dependencies caused by the sound beam and by the frequency-dependent attenuation. After this preprocessing the envelope of the corrected RF signals was calculated and B-mode images were reconstructed. The texture was analysed in the axial direction by first- and second-order statistical methods. The accuracy and precision of the attenuation methods were assessed by using computer simulated RF signals and RF data obtained from a tissue-mimicking phantom. The phantom measurements were also used to test the performance of the methods to correct for the depth dependencies.

130 citations

Journal ArticleDOI
TL;DR: A test protocol that contains the minimum set of performance measurements for predicting the clinical performance of ultrasound equipment and that is based on objective assessments by computerized image analysis is developed.
Abstract: There is an urgent need for a measurement protocol and software analysis for objective testing of the imaging performance of medical ultrasound equipment from a user's point of view. Methods for testing of imaging performance were developed. Simple test objects were used, which have a long life expectancy. First, the elevational focus (slice thickness) of the transducer was estimated and the in-plane transmit focus was positioned at the same depth. Next, the postprocessing look-up-table (LUT) was measured and linearized. The tests performed were echo level dynamic range (dB), contrast resolution (i.e., gamma of display, number of gray levels/dB) and sensitivity, overall system sensitivity, lateral sensitivity profile, dead zone, spatial resolution and geometric conformity of display. The concept of a computational observer was used to define the lesion signal-to-noise ratio, SNR(L) (or Mahalanobis distance), as a measure for contrast sensitivity. All the measurements were made using digitized images and quantified by objective means, i.e., by image analysis. The whole performance measurement protocol, as well as the quantitative measurements, have been implemented in software. An extensive data-base browser was implemented from which analysis of the images can be started and reports generated. These reports contain all the information about the measurements, such as graphs, images and numbers. The approach of calibrating the gamma by using a linearized LUT was validated by processing simultaneously acquired rf data. The contrast resolution and echo level of the rf data had to be compressed by a factor of two and amplified by a gain factor corresponding to 12 dB. This resulted in contrast curves that were practically identical to those obtained from DICOM image data. The effects of changing the transducer center frequency on the spatial resolution and contrast sensitivity were estimated to illustrate the practical usefulness of the developed approach of quality assurance by measuring objective performance characteristics. The developed methods might be considered as a minimum set of objective quality assurance measures. This set might be used to predict clinical performance of medical ultrasound equipment, taking into account the performance at a unique point in space i.e., the coinciding depths of the elevation and in-plane (azimuth) foci. Furthermore, it should be investigated whether the approach might be used to compare objectively various brands of equipment and to evaluate the performance specifications given by the manufacturer. Last but not least, the developed approach can be used to monitor, in a hospital environment, the medical ultrasound equipment during its life cycle. The software package may be viewed and downloaded at the website http://www.qa4us.eu.

129 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This Review discusses promising photonic methods that have the ability to visualize cellular and subcellular components in tissues across different penetration scales, according to the tissue depth at which they operate.
Abstract: Optical microscopy has been a fundamental tool of biological discovery for more than three centuries, but its in vivo tissue imaging ability has been restricted by light scattering to superficial investigations, even when confocal or multiphoton methods are used. Recent advances in optical and optoacoustic (photoacoustic) imaging now allow imaging at depths and resolutions unprecedented for optical methods. These abilities are increasingly important to understand the dynamic interactions of cellular processes at different systems levels, a major challenge of postgenome biology. This Review discusses promising photonic methods that have the ability to visualize cellular and subcellular components in tissues across different penetration scales. The methods are classified into microscopic, mesoscopic and macroscopic approaches, according to the tissue depth at which they operate. Key characteristics associated with different imaging implementations are described and the potential of these technologies in biological applications is discussed.

1,607 citations

Journal ArticleDOI
TL;DR: The noninvasive evaluation of LVEF has gained importance, and notwithstanding the limitations of the techniques used for its calculation, has emerged as the most widely used strategy for monitoring the changes in cardiac function, both during and after the administration of potentially car- diotoxic cancer treatment.
Abstract: Cardiac dysfunction resulting from exposure to cancer therapeutics was first recognized in the 1960s, with the widespread introduction of anthracyclines into the oncologic therapeutic armamentarium. Heart failure (HF) associated with anthracyclines was then recognized as an important side effect. As a result, physicians learned to limit their doses to avoid cardiac dysfunction. Several strategies have been used over the past decades to detect it. Two of them evolved over time to be very useful: endomyocardial biopsies and monitoring of left ven- tricular (LV) ejection fraction (LVEF) by cardiac imaging. Examination of endomyocardial biopsies proved to be the most sensitive and spe- cific parameter for the identification of anthracycline-induced LV dysfunction and became the gold standard in the 1970s. However, the interest in endomyocardial biopsy has diminished over time because of the reduction in the cumulative dosages used to treat ma- lignancies, the invasive nature of the procedure, and the remarkable progress made in noninvasive cardiac imaging. The noninvasive evaluation of LVEF has gained importance, and notwithstanding the limitations of the techniques used for its calculation, has emerged as the most widely used strategy for monitoring the changes in cardiac function, both during and after the administration of potentially car- diotoxic cancer treatment.

1,316 citations

Journal ArticleDOI
TL;DR: Currently available techniques that allow quantitative assessment of myocardial function via image-based analysis of local myocardials dynamics, including Doppler tissue imaging and speckle-tracking echocardiography, as well as integrated backscatter analysis are described.
Abstract: Echocardiographic imaging is ideally suited for the evaluation of cardiac mechanics because of its intrinsically dynamic nature. Because for decades, echocardiography has been the only imaging modality that allows dynamic imaging of the heart, it is only natural that new, increasingly automated techniques for sophisticated analysis of cardiac mechanics have been driven by researchers and manufacturers of ultrasound imaging equipment.Several such technique shave emerged over the past decades to address the issue of reader's experience and inter measurement variability in interpretation.Some were widely embraced by echocardiographers around the world and became part of the clinical routine,whereas others remained limited to research and exploration of new clinical applications.Two such techniques have dominated the research arena of echocardiography: (1) Doppler based tissue velocity measurements,frequently referred to as tissue Doppler or myocardial Doppler, and (2) speckle tracking on the basis of displacement measurements.Both types of measurements lend themselves to the derivation of multiple parameters of myocardial function. The goal of this document is to focus on the currently available techniques that allow quantitative assessment of myocardial function via image-based analysis of local myocardial dynamics, including Doppler tissue imaging and speckle-tracking echocardiography, as well as integrated backscatter analysis. This document describes the current and potential clinical applications of these techniques and their strengths and weaknesses,briefly surveys a selection of the relevant published literature while highlighting normal and abnormal findings in the context of different cardiovascular pathologies, and summarizes the unresolved issues, future research priorities, and recommended indications for clinical use.

1,205 citations

Journal ArticleDOI
TL;DR: This educational activity is designed for all cardiovascular physicians and cardiac sonographers with erest and knowledge base in the field of echocardiography; in addition, reschers, clinicians, intensivists, and other medical professionals with a cardiac ultrasound will find this activity beneficial.
Abstract: n Society of Echocardiography designates this educational activity for of 15 AMA PRA Category 1 Credits Physicians should only claim credit te with the extent of their participation in the activity CCI recognize the ASE’s certificates and have agreed to honor the credit their registry requirements for sonographers n Society of Echocardiography is committed to ensuring that its educan and all sponsored educational programs are not influenced by the special y corporation or individual, and itsmandate is to retain only those authors ial interests can be effectively resolved to maintain the goals and educaty of the activity Although amonetary or professional affiliationwith a cors not necessarily influence an author’s presentation, the Essential Areas and e ACCME require that any relationships that could possibly conflict with al value of the activity be resolved prior to publication and disclosed to Disclosures of faculty and commercial support relationships, if any, dicated ience: is designed for all cardiovascular physicians and cardiac sonographers with erest and knowledge base in the field of echocardiography; in addition, reschers, clinicians, intensivists, and other medical professionals with a spein cardiac ultrasound will find this activity beneficial

1,188 citations

Journal ArticleDOI
TL;DR: Coronary plaque composition can be predicted through the use of IVUS radiofrequency data analysis, and autoregressive classification schemes performed better than classic Fourier methods, enabling in vivo plaque characterization.
Abstract: Background—Atherosclerotic plaque stability is related to histological composition. However, current diagnostic tools do not allow adequate in vivo identification and characterization of plaques. Spectral analysis of backscattered intravascular ultrasound (IVUS) data has potential for real-time in vivo plaque classification. Methods and Results—Eighty-eight plaques from 51 left anterior descending coronary arteries were imaged ex vivo at physiological pressure with the use of 30-MHz IVUS transducers. After IVUS imaging, the arteries were pressure-fixed and corresponding histology was collected in matched images. Regions of interest, selected from histology, were 101 fibrous, 56 fibrolipidic, 50 calcified, and 70 calcified-necrotic regions. Classification schemes for model building were computed for autoregressive and classic Fourier spectra by using 75% of the data. The remaining data were used for validation. Autoregressive classification schemes performed better than those from classic Fourier spectra with accuracies of 90.4% for fibrous, 92.8% for fibrolipidic, 90.9% for calcified, and 89.5% for calcified-necrotic regions in the training data set and 79.7%, 81.2%, 92.8%, and 85.5% in the test data, respectively. Tissue maps were reconstructed with the use of accurate predictions of plaque composition from the autoregressive classification scheme. Conclusions—Coronary plaque composition can be predicted through the use of IVUS radiofrequency data analysis. Autoregressive classification schemes performed better than classic Fourier methods. These techniques allow real-time analysis of IVUS data, enabling in vivo plaque characterization. (Circulation. 2002;106:2200-2206.)

1,157 citations