scispace - formally typeset
Search or ask a question
Author

Johann W. Kolar

Other affiliations: Alstom, Infineon Technologies, Bosch  ...read more
Bio: Johann W. Kolar is an academic researcher from ETH Zurich. The author has contributed to research in topics: Rectifier & Three-phase. The author has an hindex of 97, co-authored 965 publications receiving 36902 citations. Previous affiliations of Johann W. Kolar include Alstom & Infineon Technologies.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, different materials have been tested to gain information on how core losses are influenced by a dc premagnetization, and the Steinmetz graph (SPG) is introduced to calculate core losses under dc bias conditions.
Abstract: The calculation of core losses in inductive components is difficult and has not yet been entirely solved. In particular, it is impossible to predict the influence of a dc premagnetization on the losses without extensive measurements. For this paper, different materials have been tested to gain information on how core losses are influenced by a premagnetization. Measurements on molypermalloy powder, silicon steel, nanocrystalline material and ferrite cores have been performed. The Steinmetz premagnetization graph (SPG) that shows the dependency of the Steinmetz parameters ( , and ) on premagnetization is introduced. This permits the calculation of core losses under dc bias conditions. Such graphs are given for different materials and different operating temperatures. In addition, a detailed description of the test system is given, as high accuracy is crucial.

284 citations

Proceedings ArticleDOI
06 Mar 2011
TL;DR: In this paper, a new core loss model called i2GSE was proposed, which takes magnetic relaxation effects into consideration and has been verified experimentally in a power electronic system.
Abstract: In modern power electronic systems, voltages across inductors/transformers generally show rectangular shapes, as the voltage across an inductor/transformer can be positive, negative or zero. In the stage of zero applied voltage (constant flux) core losses are not necessarily zero. At the beginning of a period of constant flux, losses still occur in the material. This is due to relaxation processes. A physical explanation about magnetic relaxation is given and a new core loss modeling approach that takes such relaxation effects into consideration is introduced. The new loss model is called i2GSE and has been verified experimentally.

283 citations

Proceedings ArticleDOI
07 Aug 2002
TL;DR: In this article, a three-phase AC-DC-AC sparse matrix converter (SMC) with no energy storage elements in the DC link and employing only 15 IGBTs was proposed.
Abstract: A novel three-phase AC-DC-AC sparse matrix converter (SMC) having no energy storage elements in the DC link and employing only 15 IGBTs as opposed to 18 IGBTs of a functionally equivalent conventional AC-AC matrix converter (CMC) is proposed. It is shown that the realization effort could be further reduced to only 9 IGBTs (ultra sparse matrix converter, USMC) in case the phase displacement of the fundamentals of voltage and current at the input and at the output is limited to /spl plusmn//spl pi//6. The dependency of the voltage and current transfer ratios of the systems on the operating parameters is analyzed and a space vector modulation scheme is described in combination with a zero current commutation procedure. Furthermore, a safe multi-step current commutation concept is treated briefly. Conduction and switching losses of the SMC and USMC are calculated in analytically closed form. Finally, the theoretical results are verified in Part II of the paper by digital simulations and results of a first experimental investigation of a 10 kW/400 V SMC prototype are given.

270 citations

Proceedings ArticleDOI
18 Jun 2006
TL;DR: In this paper, the authors proposed a combined triangular and trapezoidal modulation method to reduce losses over the wide operating range of a dual active bridge converter, which achieved a 2% improvement in efficiency.
Abstract: The main aim of this paper is to improve the performance of high current dual active bridge converters when operated over a wide voltage range. A typical application is for fuel cell vehicles where a bi-directional interface between a 12V battery and a high voltage DC bus is required. The battery side voltage ranges from 11V to 16V while the fuel cell is operated between 220V and 447V and the required power is typically 1kW. Careful analysis shows that the high currents on the battery side cause significant design issues in order to obtain a high efficiency. The standard phase shift modulation method can result in high conduction and switching losses. This paper proposes a combined triangular and trapezoidal modulation method to reduce losses over the wide operating range. Approximately, a 2% improvement in efficiency can be expected. An experimental system is used to verify the improved performance of the dual active bridge using the proposed advanced modulation method.

267 citations

Journal ArticleDOI
TL;DR: This letter shows that in order to determine whether ZVS is provided at a given operating point, the stored charge within the mosfets has to been considered and the condition LI2≥2Qoss has to be fulfilled.
Abstract: Aiming for converters with high efficiency and high power density demands converter topologies with zero-voltage switching (ZVS) capabilities. This letter shows that in order to determine whether ZVS is provided at a given operating point, the stored charge within the mosfet s has to be considered and the condition $L I^2 \geq 2Q_\text{oss} V_\text{DC}$ has to be fulfilled. In the case of incomplete soft switching, nonzero losses occur which are analytically derived and experimentally verified in this letter. Furthermore, the issue of nonideal soft-switching behavior of Si superjunction mosfet s is addressed.

263 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-Clamped (flying capacitor), and cascaded multicell with separate DC sources are presented and the circuit topology options are presented.
Abstract: Multilevel inverter technology has emerged recently as a very important alternative in the area of high-power medium-voltage energy control. This paper presents the most important topologies like diode-clamped inverter (neutral-point clamped), capacitor-clamped (flying capacitor), and cascaded multicell with separate DC sources. Emerging topologies like asymmetric hybrid cells and soft-switched multilevel inverters are also discussed. This paper also presents the most relevant control and modulation methods developed for this family of converters: multilevel sinusoidal pulsewidth modulation, multilevel selective harmonic elimination, and space-vector modulation. Special attention is dedicated to the latest and more relevant applications of these converters such as laminators, conveyor belts, and unified power-flow controllers. The need of an active front end at the input side for those inverters supplying regenerative loads is also discussed, and the circuit topology options are also presented. Finally, the peripherally developing areas such as high-voltage high-power devices and optical sensors and other opportunities for future development are addressed.

6,472 citations

Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations

01 Sep 2010

2,148 citations