scispace - formally typeset
Search or ask a question
Author

John B. Moore

Bio: John B. Moore is an academic researcher from Australian National University. The author has contributed to research in topics: Adaptive control & Linear-quadratic-Gaussian control. The author has an hindex of 50, co-authored 352 publications receiving 18573 citations. Previous affiliations of John B. Moore include Akita University & University of Hong Kong.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, an alternative characterization of the class of stabilizing regulators which is convenient to achieve online or offline H/sup 2/H/sup infinity / optimization for performance and robustness is given.
Abstract: An alternative characterization is given of the class of stabilizing regulators which is convenient to achieve online or offline H/sup 2//H/sup infinity / optimization for performance and robustness. The characterization uses disturbance signal reconstruction and nulling filters. The theory allows a reinterpretation of the necessary and sufficient conditions for regulation. Also, connections between structurally stable regulation and the internal model principle are exposed. >

8 citations

Proceedings ArticleDOI
01 Dec 1986
TL;DR: In this article, it is proposed that adaptive controllers be designed using Measures of Central Tendency of the a posteriori probability function of the control signal conditioned on knowledge of the plant, with particular attention focused on adaptive pole assignment.
Abstract: In adaptive control, there is a range of possibilities between the two extremes of applying the Certainty Equivalence Principle, which can only hold asymptotically, and Dual Control, which is not a practical proposition for on-line schemes. Here it is proposed that adaptive controllers be designed using Measures of Central Tendency of the a posteriori probability function of the control signal conditioned on knowledge of the plant, with particular attention focused on adaptive pole assignment.

8 citations

Journal ArticleDOI
TL;DR: This paper addresses certain functional learning tasks in signal processing using familiar algorithms and analytical tools of least squares for autoregressive moving average exogenous input (ARMAX) models but with parameters dependent on variables such as inputs or states, termed function input variables.
Abstract: This paper addresses certain functional learning tasks in signal processing using familiar algorithms and analytical tools of least squares for autoregressive moving average exogenous input (ARMAX) models, the models can be viewed as conventional ARMAX models but with parameters dependent on variables such as inputs or states, termed function input variables. The functional dependence of the parameters on these variables is represented in terms of basis function expansions or, more generally, interpolation function representations. The interpolation functions in a least-squares identification of coefficients also turn out to be in essence spread functions that spread learning throughout the space of function input variables. Thus for a set of training sequences or trajectories in function input space, system parameters and thereby system functionals can be updated. The idea is that these will have relevance for similar sequences or neighbouring trajectories. The concept of persistence of excitation to achieve complete function learning or, equivalently, signal model learning is studied using least-squares convergence results. Application of the proposed algorithms and theory within the signal-processing context is addressed by means of simple illustrative examples.

8 citations

Journal ArticleDOI
TL;DR: The performance of the optimal PAM demodulator is shown to be equivalent to that of an optimal discrete filter for the discrete data, and the fixed-lag smoothing results are in contrast to those for amplitude-modulated signals (AM).
Abstract: Kalman filtering theory is applied to yield an optimal causal demodulator for pulse-amplitude-modulated (PAM) signals in the presence of white Gaussian noise. The discrete-time data (or sampled continuous-time data) are assumed to be either a stationary or non-stationary Gaussian stochastic process, in general nonwhite. Optimal demodulation with delay is also achieved by application of Kalman filtering theory. The resulting demodulators (fixed-lag smoothers) are readily constructed and their performance represents in many cases a significant improvement over that for the optimal demodulator without delay. The fixed-lag smoothing results are in contrast to those for amplitude-modulated signals (AM) where only approximate fixed-lag smoothing is possible, and this with considerable design effort. The performance of the optimal PAM demodulator is shown to be equivalent to that of an optimal discrete filter for the discrete data.

8 citations

Journal ArticleDOI
TL;DR: A sub-optimal scheme which uses Forward Dynamic Programming with fixed look-ahead rather than totalLook-ahead as required for the optimal scheme is proposed and studied.

8 citations


Cited by
More filters
Book
01 Jan 1994
TL;DR: In this paper, the authors present a brief history of LMIs in control theory and discuss some of the standard problems involved in LMIs, such as linear matrix inequalities, linear differential inequalities, and matrix problems with analytic solutions.
Abstract: Preface 1. Introduction Overview A Brief History of LMIs in Control Theory Notes on the Style of the Book Origin of the Book 2. Some Standard Problems Involving LMIs. Linear Matrix Inequalities Some Standard Problems Ellipsoid Algorithm Interior-Point Methods Strict and Nonstrict LMIs Miscellaneous Results on Matrix Inequalities Some LMI Problems with Analytic Solutions 3. Some Matrix Problems. Minimizing Condition Number by Scaling Minimizing Condition Number of a Positive-Definite Matrix Minimizing Norm by Scaling Rescaling a Matrix Positive-Definite Matrix Completion Problems Quadratic Approximation of a Polytopic Norm Ellipsoidal Approximation 4. Linear Differential Inclusions. Differential Inclusions Some Specific LDIs Nonlinear System Analysis via LDIs 5. Analysis of LDIs: State Properties. Quadratic Stability Invariant Ellipsoids 6. Analysis of LDIs: Input/Output Properties. Input-to-State Properties State-to-Output Properties Input-to-Output Properties 7. State-Feedback Synthesis for LDIs. Static State-Feedback Controllers State Properties Input-to-State Properties State-to-Output Properties Input-to-Output Properties Observer-Based Controllers for Nonlinear Systems 8. Lure and Multiplier Methods. Analysis of Lure Systems Integral Quadratic Constraints Multipliers for Systems with Unknown Parameters 9. Systems with Multiplicative Noise. Analysis of Systems with Multiplicative Noise State-Feedback Synthesis 10. Miscellaneous Problems. Optimization over an Affine Family of Linear Systems Analysis of Systems with LTI Perturbations Positive Orthant Stabilizability Linear Systems with Delays Interpolation Problems The Inverse Problem of Optimal Control System Realization Problems Multi-Criterion LQG Nonconvex Multi-Criterion Quadratic Problems Notation List of Acronyms Bibliography Index.

11,085 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: A generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph, that computes-either exactly or approximately-various marginal functions derived from the global function.
Abstract: Algorithms that must deal with complicated global functions of many variables often exploit the manner in which the given functions factor as a product of "local" functions, each of which depends on a subset of the variables. Such a factorization can be visualized with a bipartite graph that we call a factor graph, In this tutorial paper, we present a generic message-passing algorithm, the sum-product algorithm, that operates in a factor graph. Following a single, simple computational rule, the sum-product algorithm computes-either exactly or approximately-various marginal functions derived from the global function. A wide variety of algorithms developed in artificial intelligence, signal processing, and digital communications can be derived as specific instances of the sum-product algorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative "turbo" decoding algorithm, Pearl's (1988) belief propagation algorithm for Bayesian networks, the Kalman filter, and certain fast Fourier transform (FFT) algorithms.

6,637 citations

BookDOI
01 Jan 2001
TL;DR: This book presents the first comprehensive treatment of Monte Carlo techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection.
Abstract: Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

6,574 citations

MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations