scispace - formally typeset
Search or ask a question
Author

John B. Schneider

Bio: John B. Schneider is an academic researcher from Washington State University. The author has contributed to research in topics: Finite-difference time-domain method & Scattering. The author has an hindex of 25, co-authored 69 publications receiving 2328 citations. Previous affiliations of John B. Schneider include University of Washington & Argonne National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Peng and Toksoz as mentioned in this paper presented a method for application of the perfectly matched layer absorbing boundary condition (ABC) to the P•SV velocity-stress finite-difference method.
Abstract: A method is presented for application of the perfectly matched layer (PML) absorbing boundary condition (ABC) to the P‐SV velocity–stress finite‐difference method The PML consists of a nonphysical material, containing both passive loss and dependent sources, that provides ‘‘active’’ absorption of fields It has been used in electromagnetic applications where it has provided excellent results for a wide range of angles and frequencies In this work, numerical simulations are used to compare the PML and an ‘‘optimal’’ second‐order elastic ABC [Peng and Toksoz, J Acoust Soc Am 95, 733–745 (1994)] Reflection factors are used to compare angular performance for continuous wave illumination; snapshots of potentials are used to compare performance for broadband illumination These comparisons clearly demonstrate the superiority of the PML formulation Within the PML there is a 60% increase in the number of unknowns per grid cell relative to the velocity–stress formulation However, the high quality of the PML ABC allows the use of a smaller grid, which can result in a lower overall computational cost

316 citations

Journal ArticleDOI
TL;DR: This survey presents some of the significant works that made the FDTD method so popular, and tracks its development up to the present-day state-of-the-art in several areas.
Abstract: The finite-difference time-domain (FDTD) method is arguably the most popular numerical method for the solution of problems in electromagnetics. Although the FDTD method has existed for nearly 30 years, its popularity continues to grow as computing costs continue to decline. Furthermore, extensions and enhancements to the method are continually being published, which further broaden its appeal. Because of the tremendous amount of FDTD-related research activity, tracking the FDTD literature can be a daunting task. We present a selective survey of FDTD publications. This survey presents some of the significant works that made the FDTD method so popular, and tracks its development up to the present-day state-of-the-art in several areas. An "on-line" BibT/sub E/X database, which contains bibliographic information about many FDTD publications, is also presented. >

237 citations

Journal ArticleDOI
TL;DR: In this paper, a Monte-Carlo finite-difference time-domain (FDTD) technique is developed for wave scattering from randomly rough, one-dimensional surfaces satisfying the Dirichlet boundary condition.
Abstract: A Monte-Carlo finite-difference time-domain (FDTD) technique is developed for wave scattering from randomly rough, one-dimensional surfaces satisfying the Dirichlet boundary condition. Both single-scale Gaussian and multiscale Pierson-Moskowitz surface roughness spectra are considered. Bistatic radar cross sections are calculated as a function of scattering angle for incident angles of 0, 45, 70, and 80 degrees measured from the vertical. The contour path FDTD method is shown to improve accuracy for incident angles greater than 45 degrees. Results compare well with those obtained using a Monte-Carlo integral equation technique. >

149 citations

Journal ArticleDOI
TL;DR: In this paper, the authors derived the necessary extension to the FDTD equations to accommodate nondiagonal tensors and obtained excellent agreement between FDTD and exact analytic results for a one-dimensional anisotropic scatterer.
Abstract: The popularity of the finite-difference time-domain (FDTD) method stems from the fact that it is not limited to a specific geometry and it does not restrict the constitutive parameters of a scatterer. Furthermore, it provides a direct solution to problems with transient illumination, but can also be used for harmonic analysis. However, researchers have limited their investigation to materials that are either isotropic or that have diagonal permittivity, conductivity, and permeability tensors. The authors derive the necessary extension to the FDTD equations to accommodate nondiagonal tensors. Excellent agreement between FDTD and exact analytic results is obtained for a one-dimensional anisotropic scatterer. >

147 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work has shown that coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface can be associated with surface plasmons, which have potential applications in miniaturized optical devices, sensors, and photonic circuits.
Abstract: Surface plasmons (SPs) are coherent oscillations of conduction electrons on a metal surface excited by electromagnetic radiation at a metal -dielectric interface. The growing field of research on such light -metal interactions is known as ‘plasmonics’. 1-3 This branch of research has attracted much attention due to its potential applications in miniaturized optical devices, sensors, and photonic circuits as well as in medical diagnostics and therapeutics. 4-8

2,284 citations

Journal ArticleDOI
TL;DR: In this article, the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices.
Abstract: We review the basic physics of surface-plasmon excitations occurring at metal/dielectric interfaces with special emphasis on the possibility of using such excitations for the localization of electromagnetic energy in one, two, and three dimensions, in a context of applications in sensing and waveguiding for functional photonic devices. Localized plasmon resonances occurring in metallic nanoparticles are discussed both for single particles and particle ensembles, focusing on the generation of confined light fields enabling enhancement of Raman-scattering and nonlinear processes. We then survey the basic properties of interface plasmons propagating along flat boundaries of thin metallic films, with applications for waveguiding along patterned films, stripes, and nanowires. Interactions between plasmonic structures and optically active media are also discussed.

1,881 citations

Journal ArticleDOI
TL;DR: In this article, a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix is presented. But the authors focus on the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues.
Abstract: Carbon (C) is a crucial material for many branches of modern technology. A growing number of demanding applications in electronics and telecommunications rely on the unique properties of C allotropes. The need for microwave absorbers and radar-absorbing materials is ever growing in military applications (reduction of radar signature of aircraft, ships, tanks, and targets) as well as in civilian applications (reduction of electromagnetic interference among components and circuits, reduction of the back-radiation of microstrip radiators). Whatever the application for which the absorber is intended, weight reduction and optimization of the operating bandwidth are two important issues. A composite absorber that uses carbonaceous particles in combination with a polymer matrix offers a large flexibility for design and properties control, as the composite can be tuned and optimized via changes in both the carbonaceous inclusions (C black, C nanotube, C fiber, graphene) and the embedding matrix (rubber, thermoplastic). This paper offers a perspective on the experimental efforts toward the development of microwave absorbers composed of carbonaceous inclusions in a polymer matrix. The absorption properties of such composites can be tailored through changes in geometry, composition, morphology, and volume fraction of the filler particles. Polymercomposites filled with carbonaceous particles provide a versatile system to probe physical properties at the nanoscale of fundamental interest and of relevance to a wide range of potential applications that span radar absorption, electromagnetic protection from natural phenomena (lightning), shielding for particle accelerators in nuclear physics, nuclear electromagnetic pulse protection, electromagnetic compatibility for electronic devices, high-intensity radiated field protection, anechoic chambers, and human exposure mitigation. Carbonaceous particles are also relevant to future applications that require environmentally benign and mechanically flexible materials.

1,026 citations

Journal ArticleDOI
TL;DR: In this paper, the current status of Waterman's T-matrix approach is reviewed, which is one of the most powerful and widely used tools for accurately computing light scattering by nonspherical particles, both single and composite, based on directly solving Maxwell's equations.
Abstract: We review the current status of Waterman's T-matrix approach which is one of the most powerful and widely used tools for accurately computing light scattering by nonspherical particles, both single and composite, based on directly solving Maxwell's equations. Specifically, we discuss the analytical method for computing orientationally-averaged light-scattering characteristics for ensembles of nonspherical particles, the methods for overcoming the numerical instability in calculating the T matrix for single nonspherical particles with large size parameters and/or extreme geometries, and the superposition approach for computing light scattering by composite/aggregated particles. Our discussion is accompanied by multiple numerical examples demonstrating the capabilities of the T-matrix approach and showing effects of nonsphericity of simple convex particles (spheroids) on light scattering.

1,022 citations