scispace - formally typeset
Search or ask a question
Author

John Bechhoefer

Bio: John Bechhoefer is an academic researcher from Simon Fraser University. The author has contributed to research in topics: DNA replication & Liquid crystal. The author has an hindex of 36, co-authored 133 publications receiving 7487 citations. Previous affiliations of John Bechhoefer include University of Chicago & University of British Columbia.


Papers
More filters
Proceedings ArticleDOI
11 Jun 2008
TL;DR: A simple feedforward technique is developed that increases the effective bandwidth of the positioning stage by a factor of 15 over its standard operation and introduces a model-free variant that is simpler to set up, performs better, and is more robust to system changes.
Abstract: We review basic issues in the control of scanning probe microscopes. To improve the performance of the present generation of instruments, we have developed a simple feedforward technique that nonetheless increases the effective bandwidth of the positioning stage by a factor of 15 over its standard operation. If the desired control signal is known in advance (as it is for a periodic scan signal), the feedforward filter can be non-causal: information about the future can be used to cancel the phase lag produced by the stage response. We compare our design with other control techniques. We show that model-based iterative control algorithms can lead to a substantial performance boost, at the cost of more measurements of the system transfer function. We then introduce a model-free variant that is simpler to set up, performs better, and is more robust to system changes.

27 citations

Journal ArticleDOI
01 Aug 2021
TL;DR: In this paper, Bechhoefer et al. discuss recent experiments that show how this "Mpemba effect" can be reliably reproduced and quantitatively understood and demonstrate that hot water quenched in a cold container can sometimes begin to freeze sooner than warm water under similar initial conditions.
Abstract: Anecdotal but elusive reports suggest that hot water quenched in a cold container can sometimes begin to freeze sooner than warm water under similar initial conditions. John Bechhoefer and colleagues discuss recent experiments that show how this ‘Mpemba effect’ can be reliably reproduced and quantitatively understood.

27 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss what is, what is not, and what is only sort of superresolution microscopy, and reveal two classes of super resolution microscopy: pseudo and true.
Abstract: In this paper, we discuss what is, what is not, and what is only sort of superresolution microscopy. We begin by considering optical resolution, first in terms of diffraction theory, then in terms of linear-systems theory, and finally in terms of techniques that use prior information, nonlinearity, and other tricks to improve resolution. This discussion reveals two classes of superresolution microscopy, “pseudo” and “true.” The former improves images up to the diffraction limit, whereas the latter allows for substantial improvements beyond the diffraction limit. The two classes are distinguished by their scaling of resolution with photon counts. Understanding the limits to imaging resolution involves concepts that pertain to almost any measurement problem, implying a framework with applications beyond optics.

26 citations

Journal ArticleDOI
TL;DR: In this article, the authors combine optical tweezers with feedback to impose arbitrary potentials on a colloidal particle, which can be either weaker or stiffer than the underlying optical trap.
Abstract: We combine optical tweezers with feedback to impose arbitrary potentials on a colloidal particle. The feedback trap detects a particle's position, calculates a force based on an imposed “virtual potential,” and shifts the trap center to generate the desired force. We create virtual harmonic and double-well potentials to manipulate particles. The harmonic potentials can be chosen to be either weaker or stiffer than the underlying optical trap. Using this flexibility, we create an isotropic trap in three dimensions. Finally, we show that we can create a virtual double-well potential with fixed well separation and adjustable barrier height. These are accomplished at length scales down to 11 nm, a feat that is difficult or impossible to create with standard optical-tweezer techniques such as time sharing, dual beams, or spatial light modulators.

25 citations

Journal ArticleDOI
TL;DR: This work derives unbiased average-domain-length estimators that yield accurate results, even in cases where the replicated (or nonreplicated) domains are larger than the average DNA fragment, and applies these estimators to previously obtained experimental data to extract improved estimates of replication kinetics parameters.
Abstract: In higher organisms, DNA replicates simultaneously from many origins. Recent in vitro experiments have yielded large amounts of data on the state of replication of DNA fragments. From measurements of the time dependence of the average size of replicated and nonreplicated domains, one can estimate the rate of initiation of DNA replication origins, as well as the average rate at which DNA bases are copied. One problem in making such estimates is that, in the experiments, the DNA is broken up into small fragments, whose finite size can bias downward the measured averages. Here, we present a systematic way of accounting for this bias by deriving theoretical relationships between the original domain-length distributions and fragment-domain length distributions. We also derive unbiased average-domain-length estimators that yield accurate results, even in cases where the replicated (or nonreplicated) domains are larger than the average DNA fragment. Then we apply these estimators to previously obtained experimental data to extract improved estimates of replication kinetics parameters.

24 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AU tip.
Abstract: Images and force measurements taken by an atomic‐force microscope (AFM) depend greatly on the properties of the spring and tip used to probe the sample’s surface. In this article, we describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AFM tip. Our procedure uses the AFM itself and does not require additional equipment.

3,975 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations