scispace - formally typeset
Search or ask a question
Author

John Bechhoefer

Bio: John Bechhoefer is an academic researcher from Simon Fraser University. The author has contributed to research in topics: DNA replication & Liquid crystal. The author has an hindex of 36, co-authored 133 publications receiving 7487 citations. Previous affiliations of John Bechhoefer include University of Chicago & University of British Columbia.


Papers
More filters
Journal ArticleDOI
TL;DR: The stabilizing effect of the elasticity in the nematic phase is considered and it is concluded that while it reduces the discrepancy, it cannotfully account for the experimental observations.
Abstract: The standard theory describing the shape instability of a moving nematic-isotropic interface during the directional ``solidification'' of a liquid crystal disagrees with experiment by a factor of 100. We consider the stabilizing effect of the elasticity in the nematic phase and conclude that while it reduces the discrepancy, it cannotfully account for the experimental observations. The disagreement between theory and experiment remains unexplained.

9 citations

Journal ArticleDOI
01 Jul 1991-EPL
TL;DR: In this paper, the authors measured profiles of smectic A droplets in air as a function of temperature and found that the droplet's facet radius is proportional to (TNA−T)α, with α = 0.45 ± 0.1, an exponent consistent with that measured for the layer compression modulus B.
Abstract: We have measured profiles of smectic A droplets in air as a function of temperature. As the droplet is cooled below the nematic-smectic A transition temperature TNA, the facet radius is proportional to (TNA−T)α, with α = 0.45 ± 0.1, an exponent consistent with that measured for the layer compression modulus B. While the relaxation time for shape changes upon cooling is less than one minute, that for heating ranges from hours to days, depending on (TNA−T). An estimate of the energy barrier to nucleating new layers suggests that that process is forbidden and that another explanation of the relaxation-rate asymmetry must be found.

9 citations

Journal ArticleDOI
TL;DR: It is argued that, when you want to know the average heat transferred to a bath in a long protocol, you should measure the average work and then infer the heat using the first law of thermodynamics.
Abstract: Feedback traps are tools for trapping and manipulating single charged objects, such as molecules in solution. An alternative to optical tweezers and other single-molecule techniques, they use feedback to counteract the Brownian motion of a molecule of interest. The trap first acquires information about a molecule's position and then applies an electric feedback force to move the molecule. Since electric forces are stronger than optical forces at small scales, feedback traps are the best way to trap single molecules without "touching" them. Feedback traps can do more than trap molecules: They can also subject a target object to forces that are calculated to be the gradient of a desired potential function U(x). If the feedback loop is fast enough, it creates a virtual potential whose dynamics will be very close to those of a particle in an actual potential U(x). But because the dynamics are entirely a result of the feedback loop--absent the feedback, there is only an object diffusing in a fluid--we are free to specify and then manipulate in time an arbitrary potential U(x,t). Here, we review recent applications of feedback traps to studies on the fundamental connections between information and thermodynamics, a topic where feedback plays an even more-fundamental role. We discuss how recursive maximum likelihood techniques allow continuous calibration, to compensate for drifts in experiments that last for days. We consider ways to estimate work and heat to a precision of 0.03 kT over these long experiments. Finally, we compare work and heat measurements of the costs of information erasure, the Landauer limit of kT ln2 per bit of information erased. We argue that when you want to know the average heat transferred to a bath in a long protocol, you should measure instead the average work and then infer the heat using the first law of thermodynamics.

9 citations

Journal ArticleDOI
TL;DR: This work calculates analytically the critical point where keeping a memory of observations starts to pay off, and defines a discord order parameter to distinguish between the different state estimates.
Abstract: When is keeping a memory of observations worthwhile? We use hidden Markov models to look at phase transitions that emerge when comparing state estimates in systems with discrete states and noisy observations. We infer the underlying state of the hidden Markov models from the observations in two ways: through naive observations, which take into account only the current observation, and through Bayesian filtering, which takes the history of observations into account. Defining a discord order parameter to distinguish between the different state estimates, we explore hidden Markov models with various numbers of states and symbols and varying transition-matrix symmetry. All behave similarly. We calculate analytically the critical point where keeping a memory of observations starts to pay off. A mapping between hidden Markov models and Ising models gives added insight into the associated phase transitions.

9 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AU tip.
Abstract: Images and force measurements taken by an atomic‐force microscope (AFM) depend greatly on the properties of the spring and tip used to probe the sample’s surface. In this article, we describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AFM tip. Our procedure uses the AFM itself and does not require additional equipment.

3,975 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations