scispace - formally typeset
Search or ask a question
Author

John Bechhoefer

Bio: John Bechhoefer is an academic researcher from Simon Fraser University. The author has contributed to research in topics: DNA replication & Liquid crystal. The author has an hindex of 36, co-authored 133 publications receiving 7487 citations. Previous affiliations of John Bechhoefer include University of Chicago & University of British Columbia.


Papers
More filters
Journal ArticleDOI
TL;DR: Dans une experience de solidification directionnelle sur une interface nematique isotrope en mouvement, on observe des modes solitaires se propageant a travers l'interface egalement l'instabilite d'Eckhaus.
Abstract: Dans une experience de solidification directionnelle sur une interface nematique isotrope en mouvement, on observe des modes solitaires se propageant a travers l'interface. On observe egalement l'instabilite d'Eckhaus. En presence de modes solitaires, le mecanisme de la selection des formes est dynamique

74 citations

Journal ArticleDOI
TL;DR: A general framework for minimizing the average work required when full control of a system's microstates is possible is presented, and simple bounds proportional to the variance of the microscopic distribution associated with the state of the bit are found.
Abstract: We study the thermodynamic cost associated with the erasure of one bit of information over a finite amount of time. We present a general framework for minimizing the average work required when full control of a system's microstates is possible. In addition to exact numerical results, we find simple bounds proportional to the variance of the microscopic distribution associated with the state of the bit. In the short-time limit, we get a closed expression for the minimum average amount of work needed to erase a bit. The average work associated with the optimal protocol can be up to a factor of 4 smaller relative to protocols constrained to end in local equilibrium. Assessing prior experimental and numerical results based on heuristic protocols, we find that our bounds often dissipate an order of magnitude less energy.

71 citations

Journal ArticleDOI
TL;DR: Surprisingly, erasure protocols that differ subtly give measurably different values for the asymptotic work, a result that helps clarify the distinctions between thermodynamic and logical reversibility.
Abstract: Here, we present an experimental study of erasure for a memory encoded in an asymmetric double-well potential. Using a feedback trap, we find that the average work to erase can be less than \(kT\ln 2\).

70 citations

Journal ArticleDOI
TL;DR: In this paper, an optical tweezers experiment suitable for a third-year undergraduate laboratory course is described, where the trap is set up in about half the time and at one-third the cost.
Abstract: We describe an optical tweezers experiment suitable for a third-year undergraduate laboratory course. Compared to previous designs, it may be set up in about half the time and at one-third the cost. The experiment incorporates several features that increase safety. We also discuss how to use stochastic methods to characterize the trap’s strength and shape.

67 citations

Journal ArticleDOI
TL;DR: In this article, Bode derived a similar relation between the magnitude (response gain) and the phase of a linear response function, which is an inequality between the Kramers-Kronig relations between real and imaginary parts of a response function.
Abstract: The implications of causality are captured by the Kramers–Kronig relations between the real and imaginary parts of a linear response function. In 1937, Bode derived a similar relation between the magnitude (response gain) and the phase. Although the Kramers–Kronig relations are an equality, the Bode’s relation is effectively an inequality. This difference is explained using elementary examples and is traced back to delays in the flow of information within the system formed by the physical object and the measurement apparatus.

64 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AU tip.
Abstract: Images and force measurements taken by an atomic‐force microscope (AFM) depend greatly on the properties of the spring and tip used to probe the sample’s surface. In this article, we describe a simple, nondestructive procedure for measuring the force constant, resonant frequency, and quality factor of an AFM cantilever spring and the effective radius of curvature of an AFM tip. Our procedure uses the AFM itself and does not require additional equipment.

3,975 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations