scispace - formally typeset
Search or ask a question
Author

John Clinton

Bio: John Clinton is an academic researcher from Swiss Seismological Service. The author has contributed to research in topics: Mars Exploration Program & Seismometer. The author has an hindex of 32, co-authored 163 publications receiving 3631 citations. Previous affiliations of John Clinton include University of Puerto Rico at Mayagüez & ETH Zurich.


Papers
More filters
Journal ArticleDOI
01 Jun 2018-Science
TL;DR: Seismological and geodetic analyses combined to characterize the mainshock and its largest aftershocks, constrain the geometry of this seismic sequence, and shed light on its causal factors found that the earthquake transferred static stress to larger nearby faults, potentially increasing the seismic hazard in the area.
Abstract: The moment magnitude (Mw) 5.5 earthquake that struck South Korea in November 2017 was one of the largest and most damaging events in that country over the past century. Its proximity to an enhanced geothermal system site, where high-pressure hydraulic injection had been performed during the previous 2 years, raises the possibility that this earthquake was anthropogenic. We have combined seismological and geodetic analyses to characterize the mainshock and its largest aftershocks, constrain the geometry of this seismic sequence, and shed light on its causal factors. According to our analysis, it seems plausible that the occurrence of this earthquake was influenced by the aforementioned industrial activities. Finally, we found that the earthquake transferred static stress to larger nearby faults, potentially increasing the seismic hazard in the area.

320 citations

Journal ArticleDOI
TL;DR: The Southern California Seismic Network (scsn) has recently installed seismic stations in two buildings on the Caltech campus (Millikan Library and the Broad Center) and continuous real-time accelerometer data from these structures are now freely available to the community as mentioned in this paper.
Abstract: The Southern California Seismic Network (scsn) has recently installed seismic stations in two buildings on the Caltech campus (Millikan Library and the Broad Center). Continuous real-time accelerometer data from these structures are now freely available to the community. This dataset provides a new opportunity to observe, and better understand, the variances in the primary dynamic property of a building system, its natural frequencies. Historical data (triggered strong-motion records, ambient and forced vibration tests) from the well-studied Millikan Library show dramatic decreases in natural frequencies, attributed mainly to moderately large local earthquakes. The current forced vibration east–west fundamental frequency is 22% lower than that originally measured in 1968. Analysis of the new continuous data stream allows the examination of other previously unrecognized sources of measurable change in the fundamental frequencies, such as weather (wind, rain, and temperature), as well as nonlinear building vibrations from small local and moderate regional earthquakes. Understanding these nonlinear shifts is one of the long-term goals of real-time building instrumentation and is critical if these systems are to be used as a postearthquake damage assessment tool.

308 citations

Journal ArticleDOI
W. Bruce Banerdt1, Suzanne E. Smrekar1, Don Banfield2, Domenico Giardini3, Matthew P. Golombek1, Catherine L. Johnson4, Catherine L. Johnson5, Philippe Lognonné6, Philippe Lognonné7, Aymeric Spiga8, Aymeric Spiga7, Tilman Spohn9, Clément Perrin6, Simon Stähler3, Daniele Antonangeli8, Sami W. Asmar1, Caroline Beghein10, Caroline Beghein11, Neil Bowles12, Ebru Bozdag13, Peter Chi11, Ulrich R. Christensen14, John Clinton3, Gareth S. Collins15, Ingrid Daubar1, Véronique Dehant16, Véronique Dehant17, Mélanie Drilleau6, Matthew Fillingim18, William M. Folkner1, Raphaël F. Garcia19, James B. Garvin20, John A. Grant21, Matthias Grott9, Jerzy Grygorczuk, Troy L. Hudson1, Jessica C. E. Irving22, Günter Kargl23, Taichi Kawamura6, Sharon Kedar1, Scott D. King24, Brigitte Knapmeyer-Endrun25, Martin Knapmeyer9, Mark T. Lemmon26, Ralph D. Lorenz27, Justin N. Maki1, Ludovic Margerin28, Scott M. McLennan29, Chloé Michaut7, Chloé Michaut30, David Mimoun19, Anna Mittelholz5, Antoine Mocquet31, Paul Morgan13, Nils Mueller9, Naomi Murdoch19, Seiichi Nagihara32, Claire E. Newman, Francis Nimmo33, Mark P. Panning1, W. Thomas Pike15, Ana-Catalina Plesa9, Sebastien Rodriguez7, Sebastien Rodriguez6, José Antonio Rodríguez-Manfredi34, Christopher T. Russell11, Nicholas Schmerr35, Matthew A. Siegler36, Matthew A. Siegler4, Sabine Stanley37, Eléanore Stutzmann6, Nicholas A Teanby38, Jeroen Tromp22, Martin van Driel3, Nicholas H. Warner39, Renee Weber40, Mark A. Wieczorek 
TL;DR: For example, the first ten months of the InSight lander on Mars revealed a planet that is seismically active and provided information about the interior, surface and atmospheric workings of Mars as mentioned in this paper.
Abstract: NASA’s InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission landed in Elysium Planitia on Mars on 26 November 2018. It aims to determine the interior structure, composition and thermal state of Mars, as well as constrain present-day seismicity and impact cratering rates. Such information is key to understanding the differentiation and subsequent thermal evolution of Mars, and thus the forces that shape the planet’s surface geology and volatile processes. Here we report an overview of the first ten months of geophysical observations by InSight. As of 30 September 2019, 174 seismic events have been recorded by the lander’s seismometer, including over 20 events of moment magnitude Mw = 3–4. The detections thus far are consistent with tectonic origins, with no impact-induced seismicity yet observed, and indicate a seismically active planet. An assessment of these detections suggests that the frequency of global seismic events below approximately Mw = 3 is similar to that of terrestrial intraplate seismic activity, but there are fewer larger quakes; no quakes exceeding Mw = 4 have been observed. The lander’s other instruments—two cameras, atmospheric pressure, temperature and wind sensors, a magnetometer and a radiometer—have yielded much more than the intended supporting data for seismometer noise characterization: magnetic field measurements indicate a local magnetic field that is ten-times stronger than orbital estimates and meteorological measurements reveal a more dynamic atmosphere than expected, hosting baroclinic and gravity waves and convective vortices. With the mission due to last for an entire Martian year or longer, these results will be built on by further measurements by the InSight lander. Geophysical and meteorological measurements by NASA’s InSight lander on Mars reveal a planet that is seismically active and provide information about the interior, surface and atmospheric workings of Mars.

299 citations

Journal ArticleDOI
TL;DR: The science goals of the experiment and the rationale used to define its requirements are described, and the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors are described.
Abstract: By the end of 2018, 42 years after the landing of the two Viking seismometers on Mars, InSight will deploy onto Mars’ surface the SEIS (Seismic Experiment for Internal Structure) instrument; a six-axes seismometer equipped with both a long-period three-axes Very Broad Band (VBB) instrument and a three-axes short-period (SP) instrument. These six sensors will cover a broad range of the seismic bandwidth, from 0.01 Hz to 50 Hz, with possible extension to longer periods. Data will be transmitted in the form of three continuous VBB components at 2 sample per second (sps), an estimation of the short period energy content from the SP at 1 sps and a continuous compound VBB/SP vertical axis at 10 sps. The continuous streams will be augmented by requested event data with sample rates from 20 to 100 sps. SEIS will improve upon the existing resolution of Viking’s Mars seismic monitoring by a factor of $\sim 2500$ at 1 Hz and $\sim 200\,000$ at 0.1 Hz. An additional major improvement is that, contrary to Viking, the seismometers will be deployed via a robotic arm directly onto Mars’ surface and will be protected against temperature and wind by highly efficient thermal and wind shielding. Based on existing knowledge of Mars, it is reasonable to infer a moment magnitude detection threshold of $M_{{w}} \sim 3$ at $40^{\circ}$ epicentral distance and a potential to detect several tens of quakes and about five impacts per year. In this paper, we first describe the science goals of the experiment and the rationale used to define its requirements. We then provide a detailed description of the hardware, from the sensors to the deployment system and associated performance, including transfer functions of the seismic sensors and temperature sensors. We conclude by describing the experiment ground segment, including data processing services, outreach and education networks and provide a description of the format to be used for future data distribution.

255 citations

Journal ArticleDOI
Philippe Lognonné1, Philippe Lognonné2, William B. Banerdt3, William T. Pike4, Domenico Giardini5, U. R. Christensen6, Raphaël F. Garcia7, Taichi Kawamura1, Sharon Kedar3, Brigitte Knapmeyer-Endrun8, Ludovic Margerin9, Francis Nimmo10, Mark P. Panning3, Benoit Tauzin11, John-Robert Scholz6, Daniele Antonangeli12, S. Barkaoui1, Eric Beucler13, Felix Bissig5, Nienke Brinkman5, Marie Calvet9, Savas Ceylan5, Constantinos Charalambous4, Paul M. Davis14, M. van Driel5, Mélanie Drilleau1, Lucile Fayon, Rakshit Joshi6, B. Kenda1, Amir Khan15, Amir Khan5, Martin Knapmeyer16, Vedran Lekic17, J. B. McClean4, David Mimoun7, Naomi Murdoch7, Lu Pan11, Clément Perrin1, Baptiste Pinot7, L. Pou10, Sabrina Menina1, Sebastien Rodriguez2, Sebastien Rodriguez1, Cedric Schmelzbach5, Nicholas Schmerr17, David Sollberger5, Aymeric Spiga2, Aymeric Spiga18, Simon Stähler5, Alexander E. Stott4, Eléonore Stutzmann1, Saikiran Tharimena3, Rudolf Widmer-Schnidrig19, Fredrik Andersson5, Veronique Ansan13, Caroline Beghein14, Maren Böse5, Ebru Bozdag20, John Clinton5, Ingrid Daubar3, Pierre Delage21, Nobuaki Fuji1, Matthew P. Golombek3, Matthias Grott22, Anna Horleston23, K. Hurst3, Jessica C. E. Irving24, A. Jacob1, Jörg Knollenberg16, S. Krasner3, C. Krause16, Ralph D. Lorenz25, Chloé Michaut2, Chloé Michaut26, Robert Myhill23, Tarje Nissen-Meyer27, J. ten Pierick5, Ana-Catalina Plesa16, C. Quantin-Nataf11, Johan O. A. Robertsson5, L. Rochas28, Martin Schimmel, Sue Smrekar3, Tilman Spohn16, Tilman Spohn29, Nicholas A Teanby23, Jeroen Tromp24, J. Vallade28, Nicolas Verdier28, Christos Vrettos30, Renee Weber31, Don Banfield32, E. Barrett3, M. Bierwirth6, S. B. Calcutt27, Nicolas Compaire7, Catherine L. Johnson33, Catherine L. Johnson34, Davor Mance5, Fabian Euchner5, L. Kerjean28, Guenole Mainsant7, Antoine Mocquet13, J. A Rodriguez Manfredi35, Gabriel Pont28, Philippe Laudet28, T. Nebut1, S. de Raucourt1, O. Robert1, Christopher T. Russell14, A. Sylvestre-Baron28, S. Tillier1, Tristram Warren27, Mark A. Wieczorek18, C. Yana28, Peter Zweifel5 
TL;DR: In this paper, the authors measured the crustal diffusivity and intrinsic attenuation using multiscattering analysis and found that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles.
Abstract: Mars’s seismic activity and noise have been monitored since January 2019 by the seismometer of the InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) lander. At night, Mars is extremely quiet; seismic noise is about 500 times lower than Earth’s microseismic noise at periods between 4 s and 30 s. The recorded seismic noise increases during the day due to ground deformations induced by convective atmospheric vortices and ground-transferred wind-generated lander noise. Here we constrain properties of the crust beneath InSight, using signals from atmospheric vortices and from the hammering of InSight’s Heat Flow and Physical Properties (HP3) instrument, as well as the three largest Marsquakes detected as of September 2019. From receiver function analysis, we infer that the uppermost 8–11 km of the crust is highly altered and/or fractured. We measure the crustal diffusivity and intrinsic attenuation using multiscattering analysis and find that seismic attenuation is about three times larger than on the Moon, which suggests that the crust contains small amounts of volatiles. The crust beneath the InSight lander on Mars is altered or fractured to 8–11 km depth and may bear volatiles, according to an analysis of seismic noise and wave scattering recorded by InSight’s seismometer.

221 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Options for processing strong-motion accelerograms are presented, discussed and evaluated from the perspective of engineering application, to avoid errors in the interpretation and use of the results.

567 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the steps that have been undertaken to create an enhanced geothermal system (EGS) at the Deep Heat Mining Project in Basel, Switzerland and suggest methods by which the risk may be reduced.

527 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze how earthquakes trigger landslides and highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface, highlighting research gaps.
Abstract: Large earthquakes initiate chains of surface processes that last much longer than the brief moments of strong shaking. Most moderate‐ and large‐magnitude earthquakes trigger landslides, ranging from small failures in the soil cover to massive, devastating rock avalanches. Some landslides dam rivers and impound lakes, which can collapse days to centuries later, and flood mountain valleys for hundreds of kilometers downstream. Landslide deposits on slopes can remobilize during heavy rainfall and evolve into debris flows. Cracks and fractures can form and widen on mountain crests and flanks, promoting increased frequency of landslides that lasts for decades. More gradual impacts involve the flushing of excess debris downstream by rivers, which can generate bank erosion and floodplain accretion as well as channel avulsions that affect flooding frequency, settlements, ecosystems, and infrastructure. Ultimately, earthquake sequences and their geomorphic consequences alter mountain landscapes over both human and geologic time scales. Two recent events have attracted intense research into earthquake‐induced landslides and their consequences: the magnitude M 7.6 Chi‐Chi, Taiwan earthquake of 1999, and the M 7.9 Wenchuan, China earthquake of 2008. Using data and insights from these and several other earthquakes, we analyze how such events initiate processes that change mountain landscapes, highlight research gaps, and suggest pathways toward a more complete understanding of the seismic effects on the Earth's surface.

424 citations

Journal ArticleDOI
01 Jul 1962-Nature
TL;DR: Linear Differential Operators By Prof. Cornelius Lanczos as discussed by the authors is a seminal work in the field of linear differential operators, and is a classic example of a linear differential operator.
Abstract: Linear Differential Operators By Prof. Cornelius Lanczos. Pp. xvi + 564. (London: D. Van Nostrand Co., Ltd.; New York: D. Van Nostrand Company, Inc., 1961.) 80s.

366 citations

Journal ArticleDOI
TL;DR: In this paper, the authors iteratively improve a 3D tomographic model of the southern California crust using numerical simulations of seismic wave propagation based on a spectral element method (SEM) in combination with an adjoint method.
Abstract: We iteratively improve a 3-D tomographic model of the southern California crust using numerical simulations of seismic wave propagation based on a spectral-element method (SEM) in combination with an adjoint method. The initial 3-D model is provided by the Southern California Earthquake Center. The data set comprises three-component seismic waveforms (i.e. both body and surface waves), filtered over the period range 2–30 s, from 143 local earthquakes recorded by a network of 203 stations. Time windows for measurements are automatically selected by the FLEXWIN algorithm. The misfit function in the tomographic inversion is based on frequency-dependent multitaper traveltime differences. The gradient of the misfit function and related finite-frequency sensitivity kernels for each earthquake are computed using an adjoint technique. The kernels are combined using a source subspace projection method to compute a model update at each iteration of a gradient-based minimization algorithm. The inversion involved 16 iterations, which required 6800 wavefield simulations. The new crustal model, m_(16), is described in terms of independent shear (V_S) and bulk-sound (V_B) wave speed variations. It exhibits strong heterogeneity, including local changes of ±30 per cent with respect to the initial 3-D model. The model reveals several features that relate to geological observations, such as sedimentary basins, exhumed batholiths, and contrasting lithologies across faults. The quality of the new model is validated by quantifying waveform misfits of full-length seismograms from 91 earthquakes that were not used in the tomographic inversion. The new model provides more accurate synthetic seismograms that will benefit seismic hazard assessment.

354 citations