scispace - formally typeset
Search or ask a question
Author

John Crowley

Bio: John Crowley is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Survival rate & Lung cancer. The author has an hindex of 89, co-authored 280 publications receiving 45595 citations. Previous affiliations of John Crowley include University of Arkansas for Medical Sciences & Fred Hutchinson Cancer Research Center.


Papers
More filters
Journal ArticleDOI
TL;DR: Suggestions include additional cutoffs for tumor size, with tumors >7 cm moving from T2 to T3; reassigning the category given to additional pulmonary nodules in some locations; and reclassifying pleural effusion as an M descriptor.

3,466 citations

Journal ArticleDOI
Peter Goldstraw1, Kari Chansky, John Crowley, Ramón Rami-Porta2, Hisao Asamura3, Wilfried Ernst Erich Eberhardt4, Andrew G. Nicholson1, Patti A. Groome5, Alan Mitchell, Vanessa Bolejack, David Ball6, David G. Beer7, Ricardo Beyruti8, Frank C. Detterbeck9, Wilfried Eberhardt4, John G. Edwards10, Françoise Galateau-Salle11, Dorothy Giroux12, Fergus V. Gleeson13, James Huang14, Catherine Kennedy15, Jhingook Kim16, Young Tae Kim17, Laura Kingsbury12, Haruhiko Kondo18, Mark Krasnik19, Kaoru Kubota20, Antoon Lerut21, Gustavo Lyons, Mirella Marino, Edith M. Marom22, Jan P. van Meerbeeck23, Takashi Nakano24, Anna K. Nowak25, Michael D Peake26, Thomas W. Rice27, Kenneth E. Rosenzweig28, Enrico Ruffini29, Valerie W. Rusch14, Nagahiro Saijo, Paul Van Schil23, Jean-Paul Sculier30, Lynn Shemanski12, Kelly G. Stratton12, Kenji Suzuki31, Yuji Tachimori32, Charles F. Thomas33, William D. Travis14, Ming-Sound Tsao34, Andrew T. Turrisi35, Johan Vansteenkiste21, Hirokazu Watanabe, Yi-Long Wu, Paul Baas36, Jeremy J. Erasmus22, Seiki Hasegawa24, Kouki Inai37, Kemp H. Kernstine38, Hedy L. Kindler39, Lee M. Krug14, Kristiaan Nackaerts21, Harvey I. Pass40, David C. Rice22, Conrad Falkson5, Pier Luigi Filosso29, Giuseppe Giaccone41, Kazuya Kondo42, Marco Lucchi43, Meinoshin Okumura44, Eugene H. Blackstone27, F. Abad Cavaco, E. Ansótegui Barrera, J. Abal Arca, I. Parente Lamelas, A. Arnau Obrer45, R. Guijarro Jorge45, D. Ball6, G.K. Bascom46, A. I. Blanco Orozco, M. A. González Castro, M.G. Blum, D. Chimondeguy, V. Cvijanovic47, S. Defranchi48, B. de Olaiz Navarro, I. Escobar Campuzano2, I. Macía Vidueira2, E. Fernández Araujo49, F. Andreo García49, Kwun M. Fong, G. Francisco Corral, S. Cerezo González, J. Freixinet Gilart, L. García Arangüena, S. García Barajas50, P. Girard, Tuncay Göksel, M. T. González Budiño51, G. González Casaurrán50, J. A. Gullón Blanco, J. Hernández Hernández, H. Hernández Rodríguez, J. Herrero Collantes, M. Iglesias Heras, J. M. Izquierdo Elena, Erik Jakobsen, S. Kostas52, P. León Atance, A. Núñez Ares, M. Liao, M. Losanovscky, G. Lyons, R. Magaroles53, L. De Esteban Júlvez53, M. Mariñán Gorospe, Brian C. McCaughan15, Catherine J. Kennedy15, R. Melchor Íñiguez54, L. Miravet Sorribes, S. Naranjo Gozalo, C. Álvarez de Arriba, M. Núñez Delgado, J. Padilla Alarcón, J. C. Peñalver Cuesta, Jongsun Park16, H. Pass40, M. J. Pavón Fernández, Mara Rosenberg, Enrico Ruffini29, V. Rusch14, J. Sánchez de Cos Escuín, A. Saura Vinuesa, M. Serra Mitjans, Trond Eirik Strand, Dragan Subotic, S.G. Swisher22, Ricardo Mingarini Terra8, Charles R. Thomas33, Kurt G. Tournoy55, P. Van Schil23, M. Velasquez, Y.L. Wu, K. Yokoi 
Imperial College London1, University of Barcelona2, Keio University3, University of Duisburg-Essen4, Queen's University5, Peter MacCallum Cancer Centre6, University of Michigan7, University of São Paulo8, Yale University9, Northern General Hospital10, University of Caen Lower Normandy11, Fred Hutchinson Cancer Research Center12, University of Oxford13, Memorial Sloan Kettering Cancer Center14, University of Sydney15, Sungkyunkwan University16, Seoul National University17, Kyorin University18, University of Copenhagen19, Nippon Medical School20, Katholieke Universiteit Leuven21, University of Texas MD Anderson Cancer Center22, University of Antwerp23, Hyogo College of Medicine24, University of Western Australia25, Glenfield Hospital26, Cleveland Clinic27, Icahn School of Medicine at Mount Sinai28, University of Turin29, Université libre de Bruxelles30, Juntendo University31, National Cancer Research Institute32, Mayo Clinic33, University of Toronto34, Sinai Grace Hospital35, Netherlands Cancer Institute36, Hiroshima University37, City of Hope National Medical Center38, University of Chicago39, New York University40, Georgetown University41, University of Tokushima42, University of Pisa43, Osaka University44, University of Valencia45, Good Samaritan Hospital46, Military Medical Academy47, Fundación Favaloro48, Autonomous University of Barcelona49, Complutense University of Madrid50, University of Oviedo51, National and Kapodistrian University of Athens52, Rovira i Virgili University53, Autonomous University of Madrid54, Ghent University55
TL;DR: The methods used to evaluate the resultant Stage groupings and the proposals put forward for the 8th edition of the TNM Classification for lung cancer due to be published late 2016 are described.

2,826 citations

Journal ArticleDOI
TL;DR: Finasteride prevents or delays the appearance of prostate cancer, but this possible benefit and a reduced risk of urinary problems must be weighed against sexual side effects and the increased risk of high-grade prostate cancer.
Abstract: background Androgens are involved in the development of prostate cancer. Finasteride, an inhibitor of 5 a -reductase, inhibits the conversion of testosterone to dihydrotestosterone, the primary androgen in the prostate, and may reduce the risk of prostate cancer. methods In the Prostate Cancer Prevention Trial, we randomly assigned 18,882 men 55 years of age or older with a normal digital rectal examination and a prostate-specific antigen (PSA) level of 3.0 ng per milliliter or lower to treatment with finasteride (5 mg per day) or placebo for seven years. Prostate biopsy was recommended if the annual PSA level, adjusted for the effect of finasteride, exceeded 4.0 ng per milliliter or if the digital rectal examination was abnormal. It was anticipated that 60 percent of participants would have prostate cancer diagnosed during the study or would undergo biopsy at the end of the study. The primary end point was the prevalence of prostate cancer during the seven years of the study. results Prostate cancer was detected in 803 of the 4368 men in the finasteride group who had data for the final analysis (18.4 percent) and 1147 of the 4692 men in the placebo group who had such data (24.4 percent), for a 24.8 percent reduction in prevalence over the seven-year period (95 percent confidence interval, 18.6 to 30.6 percent; P<0.001). Tumors of Gleason grade 7, 8, 9, or 10 were more common in the finasteride group (280 of 757 tumors [37.0 percent], or 6.4 percent of the 4368 men included in the final analysis) than in the placebo group (237 of 1068 tumors [22.2 percent], P<0.001 for the comparison between groups; or 5.1 percent of the 4692 men included in the final analysis, P=0.005 for the comparison between groups). Sexual side effects were more common in finasteride-treated men, whereas urinary symptoms were more common in men receiving placebo. conclusions Finasteride prevents or delays the appearance of prostate cancer, but this possible benefit and a reduced risk of urinary problems must be weighed against sexual side effects and the increased risk of high-grade prostate cancer.

2,503 citations

Journal ArticleDOI
TL;DR: Biopsy-detected prostate cancer, including high-grade cancers, is not rare among men with PSA levels of 4.0 ng per milliliter or less--levels generally thought to be in the normal range.
Abstract: Background The optimal upper limit of the normal range for prostate-specific antigen (PSA) is unknown. We investigated the prevalence of prostate cancer among men in the Prostate Cancer Prevention Trial who had a PSA level of 4.0 ng per milliliter or less. Methods Of 18,882 men enrolled in the prevention trial, 9459 were randomly assigned to receive placebo and had an annual measurement of PSA and a digital rectal examination. Among these 9459 men, 2950 men never had a PSA level of more than 4.0 ng per milliliter or an abnormal digital rectal examination, had a final PSA determination, and underwent a prostate biopsy after being in the study for seven years. Results Among the 2950 men (age range, 62 to 91 years), prostate cancer was diagnosed in 449 (15.2 percent); 67 of these 449 cancers (14.9 percent) had a Gleason score of 7 or higher. The prevalence of prostate cancer was 6.6 percent among men with a PSA level of up to 0.5 ng per milliliter, 10.1 percent among those with values of 0.6 to 1.0 ng per mi...

2,425 citations

Journal ArticleDOI
20 Jul 2006-Leukemia
TL;DR: The European Group for Blood and Bone Marrow Transplant/International Bone Marrows Transplant Registry criteria have been expanded, clarified and updated to provide a new comprehensive evaluation system to adequately assess clinical outcomes in myeloma.
Abstract: New uniform response criteria are required to adequately assess clinical outcomes in myeloma. The European Group for Blood and Bone Marrow Transplant/International Bone Marrow Transplant Registry criteria have been expanded, clarified and updated to provide a new comprehensive evaluation system. Categories for stringent complete response and very good partial response are added. The serum free light-chain assay is included to allow evaluation of patients with oligo-secretory disease. Inconsistencies in prior criteria are clarified making confirmation of response and disease progression easier to perform. Emphasis is placed upon time to event and duration of response as critical end points. The requirements necessary to use overall survival duration as the ultimate end point are discussed. It is anticipated that the International Response Criteria for multiple myeloma will be widely used in future clinical trials of myeloma.

2,411 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Overall cancer incidence trends are stable in women, but declining by 3.1% per year in men, much of which is because of recent rapid declines in prostate cancer diagnoses, and brain cancer has surpassed leukemia as the leading cause of cancer death among children and adolescents.
Abstract: Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute (Surveillance, Epidemiology, and End Results [SEER] Program), the Centers for Disease Control and Prevention (National Program of Cancer Registries), and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. In 2016, 1,685,210 new cancer cases and 595,690 cancer deaths are projected to occur in the United States. Overall cancer incidence trends (13 oldest SEER registries) are stable in women, but declining by 3.1% per year in men (from 2009-2012), much of which is because of recent rapid declines in prostate cancer diagnoses. The cancer death rate has dropped by 23% since 1991, translating to more than 1.7 million deaths averted through 2012. Despite this progress, death rates are increasing for cancers of the liver, pancreas, and uterine corpus, and cancer is now the leading cause of death in 21 states, primarily due to exceptionally large reductions in death from heart disease. Among children and adolescents (aged birth-19 years), brain cancer has surpassed leukemia as the leading cause of cancer death because of the dramatic therapeutic advances against leukemia. Accelerating progress against cancer requires both increased national investment in cancer research and the application of existing cancer control knowledge across all segments of the population.

14,664 citations

Journal ArticleDOI
TL;DR: The overall cancer death rate decreased from 215.1 (per 100,000 population) in 1991 to 168.7 in 2011, a total relative decline of 22%.
Abstract: Each year the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States in the current year and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data were collected by the National Cancer Institute (Surveillance, Epidemiology, and End Results [SEER] Program), the Centers for Disease Control and Prevention (National Program of Cancer Registries), and the North American Association of Central Cancer Registries. Mortality data were collected by the National Center for Health Statistics. A total of 1,658,370 new cancer cases and 589,430 cancer deaths are projected to occur in the United States in 2015. During the most recent 5 years for which there are data (2007-2011), delay-adjusted cancer incidence rates (13 oldest SEER registries) declined by 1.8% per year in men and were stable in women, while cancer death rates nationwide decreased by 1.8% per year in men and by 1.4% per year in women. The overall cancer death rate decreased from 215.1 (per 100,000 population) in 1991 to 168.7 in 2011, a total relative decline of 22%. However, the magnitude of the decline varied by state, and was generally lowest in the South (∼15%) and highest in the Northeast (≥20%). For example, there were declines of 25% to 30% in Maryland, New Jersey, Massachusetts, New York, and Delaware, which collectively averted 29,000 cancer deaths in 2011 as a result of this progress. Further gains can be accelerated by applying existing cancer control knowledge across all segments of the population.

10,989 citations

Journal ArticleDOI
TL;DR: Convergence of Probability Measures as mentioned in this paper is a well-known convergence of probability measures. But it does not consider the relationship between probability measures and the probability distribution of probabilities.
Abstract: Convergence of Probability Measures. By P. Billingsley. Chichester, Sussex, Wiley, 1968. xii, 253 p. 9 1/4“. 117s.

5,689 citations

Journal ArticleDOI
TL;DR: The FACT-G meets or exceeds all requirements for use in oncology clinical trials, including ease of administration, brevity, reliability, validity, and responsiveness to clinical change.
Abstract: PURPOSEWe developed and validated a brief, yet sensitive, 33-item general cancer quality-of-life (QL) measure for evaluating patients receiving cancer treatment, called the Functional Assessment of Cancer Therapy (FACT) scale.METHODS AND RESULTSThe five-phase validation process involved 854 patients with cancer and 15 oncology specialists. The initial pool of 370 overlapping items for breast, lung, and colorectal cancer was generated by open-ended interview with patients experienced with the symptoms of cancer and oncology professionals. Using preselected criteria, items were reduced to a 38-item general version. Factor and scaling analyses of these 38 items on 545 patients with mixed cancer diagnoses resulted in the 28-item FACT-general (FACT-G, version 2). In addition to a total score, this version produces subscale scores for physical, functional, social, and emotional well-being, as well as satisfaction with the treatment relationship. Coefficients of reliability and validity were uniformly high. The ...

5,232 citations

Journal ArticleDOI
01 May 1981
TL;DR: This chapter discusses Detecting Influential Observations and Outliers, a method for assessing Collinearity, and its applications in medicine and science.
Abstract: 1. Introduction and Overview. 2. Detecting Influential Observations and Outliers. 3. Detecting and Assessing Collinearity. 4. Applications and Remedies. 5. Research Issues and Directions for Extensions. Bibliography. Author Index. Subject Index.

4,948 citations