scispace - formally typeset
Search or ask a question
Author

John D. Coates

Bio: John D. Coates is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Perchlorate & Chlorate. The author has an hindex of 57, co-authored 195 publications receiving 16244 citations. Previous affiliations of John D. Coates include California Institute of Technology & United States Geological Survey.


Papers
More filters
Journal ArticleDOI
28 Sep 1996-Nature
TL;DR: In this article, it was shown that some microorganisms found in soils and sediments are able to use humic substances as an electron acceptor for the anaerobic oxidation of organic compounds and hydrogen.
Abstract: HUMIC substances are heterogeneous high-molecular-weight organic materials which are ubiquitous in terrestrial and aquatic environments. They are resistant to microbial degradation1 and thus are not generally considered to be dynamically involved in microbial metabolism, especially in anoxic habitats. However, we show here that some microorganisms found in soils and sediments are able to use humic substances as an electron acceptor for the anaerobic oxidation of organic compounds and hydrogen. This electron transport yields energy to support growth. Microbial humic reduction also enhances the capacity for microorganisms to reduce other, less accessible electron acceptors, such as insoluble Fe(III) oxides, because humic substances can shuttle electrons between the humic-reducing microorganisms and the Fe(III) oxide. The finding that microorganisms can donate electrons to humic acids has important implications for the mechanisms by which microorganisms oxidize both natural and contaminant organics in anaerobic soils and sediments, and suggests a biological source of electrons for humics-mediated reduction of contaminant metals and organics.

1,651 citations

Journal ArticleDOI
TL;DR: Biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars.
Abstract: Iron (Fe) has long been a recognized physiological requirement for life, yet for many microorganisms that persist in water, soils and sediments, its role extends well beyond that of a nutritional necessity. Fe(II) can function as an electron source for iron-oxidizing microorganisms under both oxic and anoxic conditions and Fe(III) can function as a terminal electron acceptor under anoxic conditions for iron-reducing microorganisms. Given that iron is the fourth most abundant element in the Earth's crust, iron redox reactions have the potential to support substantial microbial populations in soil and sedimentary environments. As such, biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars. Furthermore, the metabolic versatility of the microorganisms involved in these reactions has resulted in the development of biotechnological applications to remediate contaminated environments and harvest energy.

1,440 citations

Journal ArticleDOI
28 Jun 2001-Nature
TL;DR: Two Dechloromonas strains are reported, RCB and JJ, that can completely mineralize various mono-aromatic compounds including benzene to CO2 in the absence of O2 with nitrate as the electron acceptor, the first example, to the authors' knowledge, of an organism of any type that can oxidize benzene anaerobically.
Abstract: Benzene contamination is a significant problem It is used in a wide range of manufacturing processes and is a primary component of petroleum-based fuels Benzene is a hydrocarbon that is soluble, mobile, toxic and stable, especially in ground and surface waters It is poorly biodegraded in the absence of oxygen However, anaerobic benzene biodegradation has been documented under various conditions Although benzene biomineralization has been demonstrated with nitrate1, Fe(III)2,3,4,5, sulphate6,7 or CO28,9 as alternative electron acceptors, these studies were based on sediments or microbial enrichments Until now there were no organisms in pure culture that degraded benzene anaerobically Here we report two Dechloromonas strains, RCB and JJ, that can completely mineralize various mono-aromatic compounds including benzene to CO2 in the absence of O2 with nitrate as the electron acceptor This is the first example, to our knowledge, of an organism of any type that can oxidize benzene anaerobically, and we demonstrate the potential applicability of these organisms to the treatment of contaminated environments

521 citations

Journal ArticleDOI
TL;DR: The recent completion of the whole-genome sequence of the perchlorate-reducing microorganism Dechloromonas aromatica offers further insight into the evolution and regulation of this unique metabolic pathway.
Abstract: It is less than 7 years since perchlorate, a predominantly man-made toxic anion, was first identified as a significant water contaminant throughout the United States. Owing to its solubility and non-reactivity, bioremediation was targeted as the most promising solution for the problem of perchlorate contamination. Since 1996, concerted efforts have resulted in significant advances in our understanding of the microbiology, biochemistry and genetics of the microorganisms that are capable of reductively transforming perchlorate into innocuous chloride. The recent completion of the whole-genome sequence of the perchlorate-reducing microorganism Dechloromonas aromatica offers further insight into the evolution and regulation of this unique metabolic pathway. Several in situ and ex situ bioremediative processes have been engineered, and many monitoring tools that are based on immunology, molecular biology and stable isotope content are now available. As such, the rapid scientific response to this emerging contaminant offers great hope for its successful elimination from contaminated environments in the future.

504 citations

Journal ArticleDOI
TL;DR: The Hg-methylating ability of dissimilatory iron-reducing bacteria in the genera Geobacter, Desulfuromonas, and Shewanella was examined and none of the Shewanelle strains produced methylmercury at higher levels than abiotic controls under similar culture conditions.
Abstract: The Hg-methylating ability of dissimilatory iron-reducing bacteria in the genera Geobacter, Desulfuromonas, and Shewanella was examined. All of the Geobacter and Desulfuromonas strains tested methylated mercury while reducing Fe(III), nitrate, or fumarate. In contrast, none of the Shewanella strains produced methylmercury at higher levels than abiotic controls under similar culture conditions. Geobacter and Desulfuromonas are closely related to known Hg-methylating sulfate-reducing bacteria within the Deltaproteobacteria.

497 citations


Cited by
More filters
Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can be enhanced by physical/chemical pretreatment of contaminated soil.

2,482 citations

Journal ArticleDOI
TL;DR: The authors' perspective on microbial diversity has improved enormously over the past few decades in large part due to molecular phylogenetic studies that objectively relate organisms.
Abstract: Our perspective on microbial diversity has improved enormously over the past few decades. In large part this has been due to molecular phylogenetic studies that objectively relate organisms. Phylogenetic trees based on gene sequences are maps with which to articulate the elusive concept of

2,323 citations

Journal ArticleDOI
23 Jun 2005-Nature
TL;DR: Results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides, indicating possibilities for other unique cell-surface and cell–cell interactions, and for bioengineering of novel conductive materials.
Abstract: Microbes that can transfer electrons to extracellular electron acceptors, such as Fe(iii) oxides, are important in organic matter degradation and nutrient cycling in soils and sediments. Previous investigations on electron transfer to Fe(iii) have focused on the role of outer-membrane c-type cytochromes. However, some Fe(iii) reducers lack c-cytochromes. Geobacter species, which are the predominant Fe(iii) reducers in many environments, must directly contact Fe(iii) oxides to reduce them, and produce monolateral pili that were proposed, on the basis of the role of pili in other organisms, to aid in establishing contact with the Fe(iii) oxides. Here we report that a pilus-deficient mutant of Geobacter sulfurreducens could not reduce Fe(iii) oxides but could attach to them. Conducting-probe atomic force microscopy revealed that the pili were highly conductive. These results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides. Electron transfer through pili indicates possibilities for other unique cell-surface and cell-cell interactions, and for bioengineering of novel conductive materials.

2,225 citations