scispace - formally typeset
Search or ask a question
Author

John D. Ferry

Other affiliations: Iowa State University, Harvard University, Picatinny Arsenal  ...read more
Bio: John D. Ferry is an academic researcher from University of Wisconsin-Madison. The author has contributed to research in topics: Viscoelasticity & Viscosity. The author has an hindex of 49, co-authored 283 publications receiving 15163 citations. Previous affiliations of John D. Ferry include Iowa State University & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: The partial retention of the disperse phase in the ultrafiltration of a monodisperse system through an isoporous filter is interpreted on a statistical basis, and a simple expression for the sieve constant is evaluated in terms of the calibrated membrane porosity and the particle size.
Abstract: The partial retention of the disperse phase in the ultrafiltration of a monodisperse system through an isoporous filter is interpreted on a statistical basis, and a simple expression for the sieve constant is evaluated in terms of the calibrated membrane porosity and the particle size Curves calculated from this expression are in reasonable agreement with experimental data for the ultrafiltration of serum albumin, hemocyanin (Helix), and foot-and-mouth disease virus

240 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a molecularkinetic theory was proposed to explain the temperature dependence of relaxation behavior in glass-forming liquids in terms of the temperature variation of the size of the cooperatively rearranging region.
Abstract: A molecular‐kinetic theory, which explains the temperature dependence of relaxation behavior in glass‐forming liquids in terms of the temperature variation of the size of the cooperatively rearranging region, is presented. The size of this cooperatively rearranging region is shown to be determined by configuration restrictions in these glass‐forming liquids and is expressed in terms of their configurational entropy. The result of the theory is a relation practically coinciding with the empirical WLF equation. Application of the theory to viscosimetric experiments permits evaluation of the ratio of the kinetic glass temperature Tg (derived from usual ``quasistatic'' experiments) to the equilibrium second‐order transition temperature T2 (indicated by either statistical‐mechanical theory or extrapolations of experimental data) as well as the hindrance‐free energy per molecule. These parameters have been evaluated for fifteen substances, the experimental data for which were available. Hindrance‐free energies ...

5,037 citations

Journal ArticleDOI
TL;DR: Tumors of epithelioma are composed of two discrete but interdependent compartments: the malignant cells themselves and the stroma that they induce and in which they are dispersed.
Abstract: SOLID tumors are composed of two discrete but interdependent compartments: the malignant cells themselves and the stroma that they induce and in which they are dispersed.1 , 2 In tumors of epitheli...

4,132 citations

Journal ArticleDOI
TL;DR: Light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure.
Abstract: Equivalent weight (EW) is the number of grams of dry Nafion per mole of sulfonic acid groups when the material is in the acid form. This is an average EW in the sense that the comonomer sequence distribution (that is usually unknown to the investigator and largely unreported) gives a distribution in m in this formula. EW can be ascertained by acid-base titration, by analysis of atomic sulfur, and by FT-IR spectroscopy. The relationship between EW and m is EW ) 100m + 446 so that, for example, the side chains are separated by around 14 CF2 units in a membrane of 1100 EW. Common at the time of this writing are Nafion 117 films. The designation “117” refers to a film having 1100 EW and a nominal thickness of 0.007 in., although 115 and 112 films have also been available. Early-reported studies involved 1200 EW samples as well as special experimental varieties, some being rather thin. The equivalent weight is related to the property more often seen in the field of conventional ion exchange resins, namely the ion exchange capacity (IEC), by the equation IEC ) 1000/EW. The mention of the molecular weight of high equivalent weight (EW > 1000 g‚mol-1) Nafion is almost absent in the literature, although the range 105-106 Da has been mentioned. As this polymer does not form true solutions, the common methods of light scattering and gel permeation chromatography cannot be used to determine molecular weight as well as the size and shape of isolated, truly dissolved molecules. Studies of the structure of this polymer in solvent (albeit not a true solution) will be mentioned in the scattering section of this review. It should be noted that Curtin et al. performed size exclusion chromatography determinations of the molecular weight distribution in Nafion aqueous dispersions after they were heated to high temperatures (230, 250, and 270 °C).1 Before heating, there was a high molecular weight shoulder on a bimodal distribution, due to molecular aggregates, but this shoulder disappeared upon heating, which indicated that the aggregates were disrupted. The peaks for the monomodal distribution for the heated samples were all located at molecular weights slightly higher than 105 g‚mol-1. Also, light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure. Nafion ionomers are usually derived from the thermoplastic -SO2F precursor form that can be extruded into sheets of required thickness. Strong interactions between the ionic groups are an obstacle to melt processing. This precursor does not possess the clustered morphology that will be of great concern in this article but does possess Teflon-like crystallinity which persists when the sulfonyl fluoride form is converted to, for example, the K+ form by reacting it with KOH in water and DMSO. Thereafter, the -SO3H form is achieved by soaking the film in a sufficiently concentrated aqueous acid solution. Extrusion of the sulfonyl fluoride precursor can cause microstructural orientation in the machine direction, * Address correspondence to either author. Phone: 601-266-5595/ 4480. Fax: 601-266-5635. E-mail: Kenneth.Mauritz@usm.edu; RBMoore@usm.edu. 4535 Chem. Rev. 2004, 104, 4535−4585

4,130 citations

Journal ArticleDOI
08 Mar 2001-Nature
TL;DR: Current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses is discussed.
Abstract: Glasses are disordered materials that lack the periodicity of crystals but behave mechanically like solids. The most common way of making a glass is by cooling a viscous liquid fast enough to avoid crystallization. Although this route to the vitreous state-supercooling-has been known for millennia, the molecular processes by which liquids acquire amorphous rigidity upon cooling are not fully understood. Here we discuss current theoretical knowledge of the manner in which intermolecular forces give rise to complex behaviour in supercooled liquids and glasses. An intriguing aspect of this behaviour is the apparent connection between dynamics and thermodynamics. The multidimensional potential energy surface as a function of particle coordinates (the energy landscape) offers a convenient viewpoint for the analysis and interpretation of supercooling and glass-formation phenomena. That much of this analysis is at present largely qualitative reflects the fact that precise computations of how viscous liquids sample their landscape have become possible only recently.

3,736 citations

Journal ArticleDOI
TL;DR: In this paper, the necessary coordination of the motions of different parts of a polymer molecule is made the basis of a theory of the linear viscoelastic properties of dilute solutions of coiling polymers.
Abstract: The necessary coordination of the motions of different parts of a polymer molecule is made the basis of a theory of the linear viscoelastic properties of dilute solutions of coiling polymers. This is accomplished by use of the concept of the submolecule, a portion of polymer chain long enough for the separation of its ends to approximate a Gaussian probability distribution. The configuration of a submolecule is specified in terms of the vector which corresponds to its end‐to‐end separation. The configuration of a molecule which contains N submolecules is described by the corresponding set of N vectors. The action of a velocity gradient disturbs the distribution of configurations of the polymer molecules away from its equilibrium form, storing free energy in the system. The coordinated thermal motions of the segments cause the configurations to drift toward their equilibrium distribution. The coordination is taken into account by the mathematical requirement that motions of the atom which joins two submolecules change the configurations of both submolecules. By means of an orthogonal transformation of coordinates, the coordination of all the motions of the parts of a molecule is resolved into a series of modes. Each mode has a characteristic relaxation time. The theory produces equations by means of which the relaxation times, the components of the complex viscosity, and the components of the complex rigidity can be calculated from the steady flowviscosities of the solution and the solvent, the molecular weight and concentration of the polymer, and the absolute temperature. Limitations of the theory may arise from the exclusion from consideration of (1) very rapid relaxation processes involving segments shorter than the submolecule and (2) the obstruction of the motion of a segment by other segments with which it happens to be in contact. Another possible cause of disagreement between the theory and experimental data is the polydispersity of any actual polymer; this factor is important because the calculated relaxation times increase rapidly with increasing molecular weight.

3,456 citations