scispace - formally typeset
Search or ask a question
Author

John D Hatmaker

Bio: John D Hatmaker is an academic researcher. The author has an hindex of 1, co-authored 1 publications receiving 83 citations.


Cited by
More filters
Journal ArticleDOI
TL;DR: HAIs in hospitals are a significant cause of morbidity and mortality in the United States and the method described for estimating the number of HAIs makes the best use of existing data at the national level.
Abstract: Objective.The purpose of this study was to provide a national estimate of the number of healthcare-associated infections (HAI) and deaths in United States hospitals.Methods.No single source of nationally representative data on HAIs is currently available. The authors used a multi-step approach and three data sources. The main source of data was the National Nosocomial Infections Surveillance (NNIS) system, data from 1990–2002, conducted by the Centers for Disease Control and Prevention. Data from the National Hospital Discharge Survey (for 2002) and the American Hospital Association Survey (for 2000) were used to supplement NNIS data. The percentage of patients with an HAI whose death was determined to be caused or associated with the HAI from NNIS data was used to estimate the number of deaths.Results.In 2002, the estimated number of HAIs in U.S. hospitals, adjusted to include federal facilities, was approximately 1.7 million: 33,269 HAIs among newborns in high-risk nurseries, 19,059 among newborns in we...

2,822 citations

Journal ArticleDOI
TL;DR: DTaP vaccines, which are less reactogenic than DTP vaccines, are now in general use in many developed countries, and it is expected that the expansion of their use to adolescents and adults will have a significant impact on reducing pertussis and perhaps decrease the circulation of B. pertussedis.
Abstract: Bordetella respiratory infections are common in people (B. pertussis) and in animals (B. bronchiseptica). During the last two decades, much has been learned about the virulence determinants, pathogenesis, and immunity of Bordetella. Clinically, the full spectrum of disease due to B. pertussis infection is now understood, and infections in adolescents and adults are recognized as the reservoir for cyclic outbreaks of disease. DTaP vaccines, which are less reactogenic than DTP vaccines, are now in general use in many developed countries, and it is expected that the expansion of their use to adolescents and adults will have a significant impact on reducing pertussis and perhaps decrease the circulation of B. pertussis. Future studies should seek to determine the cause of the unique cough which is associated with Bordetella respiratory infections. It is also hoped that data gathered from molecular Bordetella research will lead to a new generation of DTaP vaccines which provide greater efficacy than is provided by today's vaccines.

1,035 citations

01 Jan 2008
TL;DR: These revised recommendations by the Advisory Committee on Immunization Practices concerning prevention of plague update previous recommendations (MMWR 1982;31:301-4).
Abstract: These revised recommendations by the Advisory Committee on Immunization Practices concerning prevention of plague update previous recommendations (MMWR 1982;31:301-4). This report includes information and recommendations on vaccination, public health practices, and medical treatment to prevent plague among humans.

1,029 citations

Journal ArticleDOI
TL;DR: A bioconjugated nanoparticle-based bioassay for in situ pathogen quantification down to single bacterium within 20 min, confirmed by the plate-counting method and realized by using two independent optical techniques.
Abstract: The rapid and sensitive determination of pathogenic bacteria is extremely important in biotechnology, medical diagnosis, and the current fight against bioterrorism. Current methods either lack ultrasensitivity or take a long time for analysis. Here, we report a bioconjugated nanoparticle-based bioassay for in situ pathogen quantification down to single bacterium within 20 min. The bioconjugated nanoparticle provides an extremely high fluorescent signal for bioanalysis and can be easily incorporated with biorecognition molecules, such as antibody. The antibody-conjugated nanoparticles can readily and specifically identify a variety of bacterium, such as Escherichia coli O157:H7, through antibody–antigen interaction and recognition. The single-bacterium-detection capability within 20 min has been confirmed by the plate-counting method and realized by using two independent optical techniques. The two detection methods correlated extremely well. Furthermore, we were able to detect multiple bacterial samples with high throughput by using a 384-well microplate format. To show the usefulness of this assay, we have accurately detected 1–400 E. coli O157 bacterial cells in spiked ground beef samples. Our results demonstrate the potential for a broad application of bioconjugated nanoparticles in practical biotechnological and medical applications in various biodetection systems. The ultimate power of integrating bionanotechnology into complex biological systems will emerge as a revolutionary tool for ultrasensitive detection of disease markers and infectious agents.

556 citations

Journal ArticleDOI
TL;DR: It is shown that Culex pipiens, the dominant enzootic and bridge vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections.
Abstract: West Nile virus (WNV) has caused repeated large-scale human epidemics in North America since it was first detected in 1999 and is now the dominant vector-borne disease in this continent. Understanding the factors that determine the intensity of the spillover of this zoonotic pathogen from birds to humans (via mosquitoes) is a prerequisite for predicting and preventing human epidemics. We integrated mosquito feeding behavior with data on the population dynamics and WNV epidemiology of mosquitoes, birds, and humans. We show that Culex pipiens, the dominant enzootic (bird-to-bird) and bridge (bird-to-human) vector of WNV in urbanized areas in the northeast and north-central United States, shifted its feeding preferences from birds to humans by 7-fold during late summer and early fall, coinciding with the dispersal of its preferred host (American robins, Turdus migratorius) and the rise in human WNV infections. We also show that feeding shifts in Cx. tarsalis amplify human WNV epidemics in Colorado and California and occur during periods of robin dispersal and migration. Our results provide a direct explanation for the timing and intensity of human WNV epidemics. Shifts in feeding from competent avian hosts early in an epidemic to incompetent humans after mosquito infection prevalences are high result in synergistic effects that greatly amplify the number of human infections of this and other pathogens. Our results underscore the dramatic effects of vector behavior in driving the transmission of zoonotic pathogens to humans.

530 citations