scispace - formally typeset
Search or ask a question
Author

John D. Milliman

Bio: John D. Milliman is an academic researcher from College of William & Mary. The author has contributed to research in topics: Sediment & Continental shelf. The author has an hindex of 65, co-authored 158 publications receiving 22454 citations. Previous affiliations of John D. Milliman include Virginia Institute of Marine Science & Woods Hole Oceanographic Institution.


Papers
More filters
Journal ArticleDOI
TL;DR: The authors showed that rivers with large sediment loads (annual discharges greater than about $15 \times 10^{6}$ tons) contribute about $7 −times 10 −9$ tons of suspended sediment to the ocean yearly.
Abstract: New data and new estimates from old data show that rivers with large sediment loads (annual discharges greater than about $15 \times 10^{6}$ tons) contribute about $7 \times 10^{9}$ tons of suspended sediment to the ocean yearly. Extrapolating available data for all drainage basins, the total suspended sediment delivered by all rivers to the oceans is about $13.5 \times 10^{9}$ tons annually; bedload and flood discharges may account for an additional $1-2 \times 10^{9}$ tons. About 70% of this total is derived from southern Asia and the larger islands in the Pacific and Indian Oceans, where sediment yields are much greater than for other drainage basins.

3,409 citations

Journal ArticleDOI
TL;DR: In this paper, data from 280 rivers discharging to the ocean indicates that sediment loads/yields are a log-linear function of basin area and maximum elevation of the river basin.
Abstract: Analysis of data from 280 rivers discharging to the ocean indicates that sediment loads/yields are a log-linear function of basin area and maximum elevation of the river basin. Other factors controlling sediment discharge (e.g., climate, runoff) appear to have secondary importance. A notable exception is the influence of human activity, climate, and geology on the rivers draining southern Asia and Oceania. Sediment fluxes from small mountainous rivers, many of which discharge directly onto active margins (e.g., western South and North America and most high-standing oceanic islands), have been greatly underestimated in previous global sediment budgets, perhaps by as much as a factor of three. In contrast, sediment fluxes to the ocean from large rivers (nearly all of which discharge onto passive margins or marginal seas) have been overestimated, as some of the sediment load is subaerially sequestered in subsiding deltas. Before the proliferation of dam construction in the latter half of this century, rivers...

3,227 citations

Book
24 Feb 2011
TL;DR: The Global River Database as mentioned in this paper is a collection of river data from North and Central America, South America, Europe, Africa, Asia, and Oceania with a focus on flooding and erosion.
Abstract: Foreword 1. Introduction 2. Runoff, erosion and delivery to the coastal ocean 3. Temporal variations 4. Human impacts Appendices. Global River Database: Appendix A: North and Central America Appendix B: South America Appendix C: Europe Appendix D: Africa Appendix E: Eurasia Appendix F: Asia Appendix G: Oceania References Index.

1,046 citations

Journal ArticleDOI
TL;DR: In this paper, a new dataset of historical monthly streamflow at the farthest downstream stations for the world's 925 largest ocean-reaching rivers has been created for community use.
Abstract: A new dataset of historical monthly streamflow at the farthest downstream stations for the world’s 925 largest ocean-reaching rivers has been created for community use. Available new gauge records are added to a network of gauges that covers ∼80 × 106 km2 or ∼80% of global ocean-draining land areas and accounts for about 73% of global total runoff. For most of the large rivers, the record for 1948–2004 is fairly complete. Data gaps in the records are filled through linear regression using streamflow simulated by a land surface model [Community Land Model, version 3 (CLM3)] forced with observed precipitation and other atmospheric forcings that are significantly (and often strongly) correlated with the observed streamflow for most rivers. Compared with previous studies, the new dataset has improved homogeneity and enables more reliable assessments of decadal and long-term changes in continental freshwater discharge into the oceans. The model-simulated runoff ratio over drainage areas with and witho...

809 citations

Journal ArticleDOI
TL;DR: In this paper, high-resolution seismic profiling and coring in the southern East China Sea during 2003 and 2004 cruises has revealed an elongated (similar to 800 km) distal subaqueous mud wedge extending from the Yangtze River mouth southward off the Zhejiang and Fujian coasts into the Taiwan Strait.

758 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The authors showed that rivers with large sediment loads (annual discharges greater than about $15 \times 10^{6}$ tons) contribute about $7 −times 10 −9$ tons of suspended sediment to the ocean yearly.
Abstract: New data and new estimates from old data show that rivers with large sediment loads (annual discharges greater than about $15 \times 10^{6}$ tons) contribute about $7 \times 10^{9}$ tons of suspended sediment to the ocean yearly. Extrapolating available data for all drainage basins, the total suspended sediment delivered by all rivers to the oceans is about $13.5 \times 10^{9}$ tons annually; bedload and flood discharges may account for an additional $1-2 \times 10^{9}$ tons. About 70% of this total is derived from southern Asia and the larger islands in the Pacific and Indian Oceans, where sediment yields are much greater than for other drainage basins.

3,409 citations

Journal ArticleDOI
TL;DR: In this paper, the authors look at observations and model projections from 1923 to 2010, to test the ability of models to predict future drought conditions, which inspires confidence in their projections of drought.
Abstract: Historical records show increased aridity over many land areas since 1950. This study looks at observations and model projections from 1923 to 2010, to test the ability of models to predict future drought conditions. Models are able to capture the greenhouse-gas forcing and El Nino–Southern Oscillation mode for historical periods, which inspires confidence in their projections of drought.

3,385 citations

Journal ArticleDOI
TL;DR: In this paper, data from 280 rivers discharging to the ocean indicates that sediment loads/yields are a log-linear function of basin area and maximum elevation of the river basin.
Abstract: Analysis of data from 280 rivers discharging to the ocean indicates that sediment loads/yields are a log-linear function of basin area and maximum elevation of the river basin. Other factors controlling sediment discharge (e.g., climate, runoff) appear to have secondary importance. A notable exception is the influence of human activity, climate, and geology on the rivers draining southern Asia and Oceania. Sediment fluxes from small mountainous rivers, many of which discharge directly onto active margins (e.g., western South and North America and most high-standing oceanic islands), have been greatly underestimated in previous global sediment budgets, perhaps by as much as a factor of three. In contrast, sediment fluxes to the ocean from large rivers (nearly all of which discharge onto passive margins or marginal seas) have been overestimated, as some of the sediment load is subaerially sequestered in subsiding deltas. Before the proliferation of dam construction in the latter half of this century, rivers...

3,227 citations

Book
01 Sep 2011
TL;DR: In this paper, the Ecosystem Concept is used to describe the Earth's Climate System and Geology and Soils, and the ecosystem concept is used for managing and sustaining ecosystems.
Abstract: I. CONTEXT * The Ecosystem Concept * Earth's Climate System * Geology and Soils * II. MECHANISMS * Terrestrial Water and Energy Balance * Carbon Input to Terrestrial Ecosystems * Terrestrial Production Processes * Terrestrial Decomposition * Terrestrial Plant Nutrient Use * Terrestrial Nutrient Cycling * Aquatic Carbon and Nutrient Cycling * Trophic Dynamics * Community Effects on Ecosystem Processes * III. PATTERNS * Temporal Dynamics * Landscape Heterogeneity and Ecosystem Dynamics * IV. INTEGRATION * Global Biogeochemical Cycles * Managing and Sustaining Ecosystem * Abbreviations * Glossary * References

3,086 citations

Journal ArticleDOI
TL;DR: The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research as mentioned in this paper, and both are only imperfect analogs to current conditions.
Abstract: Rising atmospheric carbon dioxide (CO2), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO2 emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO2 conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO2 and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

2,995 citations